Kuzhagaliyeva Nursulu, Horváth Samuel, Williams John, Nicolle Andre, Sarathy S Mani
Clean Combustion Research Center (CCRC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Visual Computing Center (VCC), Computer, Electrical and Mathematical Sciences & Engineering Division, KAUST, Thuwal, 23955-6900, Saudi Arabia.
Commun Chem. 2022 Sep 16;5(1):111. doi: 10.1038/s42004-022-00722-3.
High-performance fuel design is imperative to achieve cleaner burning and high-efficiency engine systems. We introduce a data-driven artificial intelligence (AI) framework to design liquid fuels exhibiting tailor-made properties for combustion engine applications to improve efficiency and lower carbon emissions. The fuel design approach is a constrained optimization task integrating two parts: (i) a deep learning (DL) model to predict the properties of pure components and mixtures and (ii) search algorithms to efficiently navigate in the chemical space. Our approach presents the mixture-hidden vector as a linear combination of each single component's vectors in each blend and incorporates it into the network architecture (the mixing operator (MO)). We demonstrate that the DL model exhibits similar accuracy as competing computational techniques in predicting the properties for pure components, while the search tool can generate multiple candidate fuel mixtures. The integrated framework was evaluated to showcase the design of high-octane and low-sooting tendency fuel that is subject to gasoline specification constraints. This AI fuel design methodology enables rapidly developing fuel formulations to optimize engine efficiency and lower emissions.
高性能燃料设计对于实现更清洁燃烧和高效发动机系统至关重要。我们引入了一个数据驱动的人工智能(AI)框架,以设计具有定制特性的液体燃料,用于内燃机应用,以提高效率并降低碳排放。燃料设计方法是一个约束优化任务,它整合了两个部分:(i)一个深度学习(DL)模型,用于预测纯组分和混合物的特性;(ii)搜索算法,用于在化学空间中高效导航。我们的方法将混合物隐藏向量表示为每种混合物中各单一组分向量的线性组合,并将其纳入网络架构(混合算子(MO))。我们证明,在预测纯组分特性方面,DL模型表现出与竞争计算技术相似的准确性,而搜索工具可以生成多种候选燃料混合物。对集成框架进行了评估,以展示受汽油规格约束的高辛烷值和低烟炱倾向燃料的设计。这种人工智能燃料设计方法能够快速开发燃料配方,以优化发动机效率并降低排放。