Suppr超能文献

应用于新抗原识别的人工智能有助于个性化癌症免疫治疗。

Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy.

作者信息

Cai Yu, Chen Rui, Gao Shenghan, Li Wenqing, Liu Yuru, Su Guodong, Song Mingming, Jiang Mengju, Jiang Chao, Zhang Xi

机构信息

School of Medicine, Northwest University, Xi'an, Shaanxi, China.

Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.

出版信息

Front Oncol. 2023 Jan 9;12:1054231. doi: 10.3389/fonc.2022.1054231. eCollection 2022.

Abstract

The field of cancer neoantigen investigation has developed swiftly in the past decade. Predicting novel and true neoantigens derived from large multi-omics data became difficult but critical challenges. The rise of Artificial Intelligence (AI) or Machine Learning (ML) in biomedicine application has brought benefits to strengthen the current computational pipeline for neoantigen prediction. ML algorithms offer powerful tools to recognize the multidimensional nature of the omics data and therefore extract the key neoantigen features enabling a successful discovery of new neoantigens. The present review aims to outline the significant technology progress of machine learning approaches, especially the newly deep learning tools and pipelines, that were recently applied in neoantigen prediction. In this review article, we summarize the current state-of-the-art tools developed to predict neoantigens. The standard workflow includes calling genetic variants in paired tumor and blood samples, and rating the binding affinity between mutated peptide, MHC (I and II) and T cell receptor (TCR), followed by characterizing the immunogenicity of tumor epitopes. More specifically, we highlight the outstanding feature extraction tools and multi-layer neural network architectures in typical ML models. It is noted that more integrated neoantigen-predicting pipelines are constructed with hybrid or combined ML algorithms instead of conventional machine learning models. In addition, the trends and challenges in further optimizing and integrating the existing pipelines are discussed.

摘要

在过去十年中,癌症新抗原研究领域发展迅速。从大量多组学数据中预测新的和真正的新抗原已成为一项困难但至关重要的挑战。人工智能(AI)或机器学习(ML)在生物医学应用中的兴起为加强当前新抗原预测的计算流程带来了益处。机器学习算法提供了强大的工具来识别组学数据的多维性质,从而提取关键的新抗原特征,实现新抗原的成功发现。本综述旨在概述机器学习方法的重大技术进展,特别是最近应用于新抗原预测的新深度学习工具和流程。在这篇综述文章中,我们总结了目前为预测新抗原而开发的最先进工具。标准工作流程包括在配对的肿瘤和血液样本中检测基因变异,评估突变肽、MHC(I类和II类)与T细胞受体(TCR)之间的结合亲和力,然后表征肿瘤表位的免疫原性。更具体地说,我们重点介绍了典型机器学习模型中出色的特征提取工具和多层神经网络架构。需要注意的是,更多集成的新抗原预测流程是用混合或组合的机器学习算法构建的,而不是传统的机器学习模型。此外,还讨论了进一步优化和整合现有流程的趋势和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9601/9868469/e996a6c30768/fonc-12-1054231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验