Veysset David, Zhuo Yueming, Hattori Junya, Buckhory Mohajeet, Palanker Daniel
Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA.
Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
Biomed Opt Express. 2022 Dec 5;14(1):37-53. doi: 10.1364/BOE.475705. eCollection 2023 Jan 1.
Controlling the tissue temperature rise during retinal laser therapy is highly desirable for predictable and reproducible outcomes of the procedure, especially with non-damaging settings. In this work, we demonstrate a method for determining the optical absorption, the thermal conductivity, and the thermal expansion coefficients of RPE and choroid using phase-resolved optical coherence tomography (pOCT). These parameters are extracted from the measured changes in the optical path length (Δ) using an axisymmetric thermo-mechanical model. This allows the calculation of the temperature rise during hyperthermia, which was further validated by imaging the temperature-sensitive fluorescence at the same location. We demonstrate that, with a temperature uncertainty of ±0.9° and a peak heating of about 17° following a laser pulse of 20 ms, this methodology is expected to be safe and sufficiently precise for calibration of the non-damaging retinal laser therapy. The method is directly translatable to in-vivo studies, where we expect a similar precision.
在视网膜激光治疗过程中控制组织温度升高对于该手术可预测和可重复的结果非常理想,尤其是在无损设置下。在这项工作中,我们展示了一种使用相分辨光学相干断层扫描(pOCT)来确定视网膜色素上皮(RPE)和脉络膜的光吸收、热导率和热膨胀系数的方法。这些参数是使用轴对称热机械模型从测量的光程长度(Δ)变化中提取的。这使得能够计算热疗期间的温度升高,通过在同一位置对温度敏感荧光进行成像进一步验证了这一点。我们证明,在20毫秒的激光脉冲后,温度不确定性为±0.9°,峰值加热约为17°,这种方法有望安全且足够精确地用于无损视网膜激光治疗的校准。该方法可直接转化为体内研究,我们预计在体内研究中也会有类似的精度。