Werden Benjamin S, Giordano Michael R, Mahata Khadak, Islam Md Robiul, Goetz J Douglas, Puppala Siva Praveen, Saikawa Eri, Panday Arnico K, Yokelson Robert J, Stone Elizabeth A, DeCarlo Peter F
Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania19104, United States.
International Centre for Integrated Mountain Development, Khumaltar, Lalitpur, 44700Kathmandu, Nepal.
ACS Earth Space Chem. 2022 Dec 8;7(1):49-68. doi: 10.1021/acsearthspacechem.2c00226. eCollection 2023 Jan 19.
The Kathmandu valley experiences an average wintertime PM concentration of ∼100 μg m and daily peaks over 200 μg m. We present ambient nonrefractory PM chemical composition, and concentration measured by a mini aerosol mass spectrometer (mAMS) sequentially at Dhulikhel (on the valley exterior), then urban Ratnapark, and finally suburban Lalitpur in winter 2018. At all sites, organic aerosol (OA) was the largest contributor to combined PM (C-PM) (49%) and black carbon (BC) was the second largest contributor (21%). The average background C-PM at Dhulikhel was 48 μg m; the urban enhancement was 120% (58 μg m). BC had an average of 6.1 μg m at Dhulikhel, an urban enhancement of 17.4 μg m. Sulfate (SO) was 3.6 μg m at Dhulikhel, then 7.5 μg m at Ratnapark, and 12.0 μg m at Lalitpur in the brick kiln region. Chloride (Chl) increased by 330 and 250% from Dhulikhel to Ratnapark and Lalitpur on average. Positive matrix factorization (PMF) identified seven OA sources, four primary OA sources, hydrocarbon-like (HOA), biomass burning (BBOA), trash burning (TBOA), a sulfate-containing local OA source (sLOA), and three secondary oxygenated organic aerosols (OOA). OOA was the largest fraction of OA, over 50% outside the valley and 36% within. HOA (traffic) was the most prominent primary source, contributing 21% of all OA and 44% of BC. Brick kilns were the second largest contributor to C-PM, 12% of OA, 33% of BC, and a primary emitter of aerosol sulfate. These results, though successive, indicate the importance of multisite measurements to understand ambient particulate matter concentration heterogeneity across urban regions.
加德满都谷地冬季的平均细颗粒物(PM)浓度约为100微克/立方米,日峰值超过200微克/立方米。我们展示了2018年冬季在杜利凯尔(位于谷地外围)、城市拉特纳帕克,最后是郊区拉利特布尔,通过小型气溶胶质谱仪(mAMS)依次测量的环境非难熔性PM的化学成分和浓度。在所有站点,有机气溶胶(OA)是综合PM(C-PM)的最大贡献者(49%),黑碳(BC)是第二大贡献者(21%)。杜利凯尔的平均背景C-PM为48微克/立方米;城市增强为120%(58微克/立方米)。杜利凯尔的BC平均为6.1微克/立方米,城市增强为17.4微克/立方米。硫酸盐(SO)在杜利凯尔为3.6微克/立方米,在拉特纳帕克为7.5微克/立方米,在砖窑地区的拉利特布尔为12.0微克/立方米。氯化物(Chl)从杜利凯尔到拉特纳帕克和拉利特布尔平均增加了330%和250%。正定矩阵因子分解(PMF)识别出七种OA源,四种主要OA源,类烃(HOA)、生物质燃烧(BBOA)、垃圾燃烧(TBOA)、一种含硫酸盐的本地OA源(sLOA),以及三种二次氧化有机气溶胶(OOA)。OOA是OA的最大组成部分,在谷地外超过50%,在谷内为36%。HOA(交通)是最主要的主要来源,占所有OA的21%和BC的44%。砖窑是C-PM的第二大贡献者,占OA的12%,BC的33%,并且是气溶胶硫酸盐的主要排放源。这些结果虽然是连续测量得到的,但表明了多站点测量对于理解城市地区环境颗粒物浓度异质性的重要性。