Suppr超能文献

机器学习支持正交相机测角法,可实现准确和稳健的接触角测量。

Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements.

机构信息

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Sci Rep. 2023 Jan 27;13(1):1497. doi: 10.1038/s41598-023-28763-1.

Abstract

Characterization of surface wettability plays an integral role in physical, chemical, and biological processes. However, the conventional fitting algorithms are not suitable for accurate estimation of wetting properties, especially on hydrophilic surfaces, due to optical distortions triggered by changes in the focal length of the moving drops. Therefore, here we present an original setup coupled with Convolutional Neural Networks (CNN) for estimation of Contact Angle (CA). The developed algorithm is trained on 3375 ground truth images (at different front-lit illuminations), less sensitive to the edges of the drops, and retains its stability for images that are synthetically blurred with higher Gaussian Blurring (GB) values (GB: 0-22) if compared to existing goniometers (GB: 0-12). Besides, the proposed technique can precisely analyze drops of various colors and chemistries on different surfaces. Finally, our automated orthogonal camera goniometer has a significantly lower average standard deviation (6.7° vs. 14.6°) and coefficient of variation (14.9 vs. 29.2%) than the existing techniques and enables wettability assessment of non-spherical drops on heterogeneous surfaces.

摘要

表面润湿性的特性在物理、化学和生物过程中起着不可或缺的作用。然而,由于移动液滴焦距变化引发的光学失真,传统的拟合算法并不适用于准确估计润湿性特性,特别是在亲水表面上。因此,我们在这里提出了一种原始的装置,并结合卷积神经网络(CNN)来估计接触角(CA)。所开发的算法是在 3375 张地面实况图像(不同前向照明)上进行训练的,对液滴边缘的敏感性较低,如果与现有的测角仪(GB:0-12)相比,对具有更高高斯模糊(GB)值(GB:0-22)的合成模糊图像保持稳定性。此外,该技术可以精确分析不同表面上各种颜色和化学成分的液滴。最后,我们的自动化正交相机测角仪的平均标准偏差(6.7°对 14.6°)和变异系数(14.9%对 29.2%)明显低于现有技术,能够评估非球形液滴在异质表面上的润湿性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3934/9883237/166bc4d1b72f/41598_2023_28763_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验