Suppr超能文献

非常年轻女性中发生的激素受体阳性乳腺癌的基因组特征。

Genomic characterisation of hormone receptor-positive breast cancer arising in very young women.

机构信息

Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.

International Breast Cancer Study Group Central Pathology Office, IEO European Institute of Oncology IRCCS, University of Milan, Milan, Italy.

出版信息

Ann Oncol. 2023 Apr;34(4):397-409. doi: 10.1016/j.annonc.2023.01.009. Epub 2023 Jan 25.

Abstract

BACKGROUND

Very young premenopausal women diagnosed with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+HER2-) early breast cancer (EBC) have higher rates of recurrence and death for reasons that remain largely unexplained.

PATIENTS AND METHODS

Genomic sequencing was applied to HR+HER2- tumours from patients enrolled in the Suppression of Ovarian Function Trial (SOFT) to determine genomic drivers that are enriched in young premenopausal women. Genomic alterations were characterised using next-generation sequencing from a subset of 1276 patients (deep targeted sequencing, n = 1258; whole-exome sequencing in a young-age, case-control subsample, n = 82). We defined copy number (CN) subgroups and assessed for features suggestive of homologous recombination deficiency (HRD). Genomic alteration frequencies were compared between young premenopausal women (<40 years) and older premenopausal women (≥40 years), and assessed for associations with distant recurrence-free interval (DRFI) and overall survival (OS).

RESULTS

Younger women (<40 years, n = 359) compared with older women (≥40 years, n = 917) had significantly higher frequencies of mutations in GATA3 (19% versus 16%) and CN amplifications (CNAs) (47% versus 26%), but significantly lower frequencies of mutations in PIK3CA (32% versus 47%), CDH1 (3% versus 9%), and MAP3K1 (7% versus 12%). Additionally, they had significantly higher frequencies of features suggestive of HRD (27% versus 21%) and a higher proportion of PIK3CA mutations with concurrent CNAs (23% versus 11%). Genomic features suggestive of HRD, PIK3CA mutations with CNAs, and CNAs were associated with significantly worse DRFI and OS compared with those without these features. These poor prognostic features were enriched in younger patients: present in 72% of patients aged <35 years, 54% aged 35-39 years, and 40% aged ≥40 years. Poor prognostic features [n = 584 (46%)] versus none [n = 692 (54%)] had an 8-year DRFI of 84% versus 94% and OS of 88% versus 96%. Younger women (<40 years) had the poorest outcomes: 8-year DRFI 74% versus 85% and OS 80% versus 93%, respectively.

CONCLUSION

These results provide insights into genomic alterations that are enriched in young women with HR+HER2- EBC, provide rationale for genomic subgrouping, and highlight priority molecular targets for future clinical trials.

摘要

背景

激素受体阳性、人表皮生长因子受体 2 阴性(HR+HER2-)的早期乳腺癌(EBC)患者,年龄非常小的绝经前女性复发和死亡的比率更高,但原因仍未得到充分解释。

患者和方法

对参加抑制卵巢功能试验(SOFT)的 HR+HER2- 肿瘤患者进行基因组测序,以确定在年轻绝经前女性中富集的基因组驱动因素。使用下一代测序技术对 1276 例患者中的一部分(深度靶向测序,n=1258;年轻病例对照亚组的全外显子测序,n=82)进行基因组改变特征描述。我们定义了拷贝数(CN)亚组,并评估了同源重组缺陷(HRD)的特征。比较年轻绝经前女性(<40 岁)和年长绝经前女性(≥40 岁)之间的基因组改变频率,并评估其与远处无复发生存期(DRFI)和总生存期(OS)的关系。

结果

与年长绝经前女性(≥40 岁,n=917)相比,年龄较小的女性(<40 岁,n=359)GATA3 突变(19%比 16%)和 CN 扩增(CNAs)(47%比 26%)的频率显著更高,但 PIK3CA 突变(32%比 47%)、CDH1 突变(3%比 9%)和 MAP3K1 突变(7%比 12%)的频率显著更低。此外,她们 HRD 特征提示的频率显著更高(27%比 21%),PIK3CA 突变伴 CNA 的比例也显著更高(23%比 11%)。提示 HRD、PIK3CA 突变伴 CNA 和 CNA 的基因组特征与明显更差的 DRFI 和 OS 相关,而无这些特征的患者则无此情况。这些不良预后特征在年轻患者中更为富集:<35 岁患者中占 72%,35-39 岁患者中占 54%,≥40 岁患者中占 40%。不良预后特征[n=584(46%)]与无不良预后特征[n=692(54%)]相比,8 年 DRFI 为 84%比 94%,OS 为 88%比 96%。年轻女性(<40 岁)的预后最差:8 年 DRFI 为 74%比 85%,OS 为 80%比 93%。

结论

这些结果为 HR+HER2- EBC 年轻女性中富集的基因组改变提供了见解,为基因组亚群提供了依据,并强调了未来临床试验的优先分子靶点。

相似文献

1
Genomic characterisation of hormone receptor-positive breast cancer arising in very young women.
Ann Oncol. 2023 Apr;34(4):397-409. doi: 10.1016/j.annonc.2023.01.009. Epub 2023 Jan 25.
4
Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer.
Ann Oncol. 2020 Mar;31(3):377-386. doi: 10.1016/j.annonc.2019.11.006. Epub 2020 Jan 24.
7
Clinical Actionability of Molecular Targets in Multi-Ethnic Breast Cancer Patients: A Retrospective Single-Institutional Study.
Mol Diagn Ther. 2025 May;29(3):393-405. doi: 10.1007/s40291-025-00777-7. Epub 2025 Apr 7.
9
Somatic and Germline Genomic Alterations in Very Young Women with Breast Cancer.
Clin Cancer Res. 2022 Jun 1;28(11):2339-2348. doi: 10.1158/1078-0432.CCR-21-2572.

引用本文的文献

1
Proteogenomic characterization of invasive breast tumors in young women.
NPJ Breast Cancer. 2025 Aug 18;11(1):94. doi: 10.1038/s41523-025-00793-0.
6
Risk of second primary cancer in young breast cancer survivors: an important yet overlooked issue.
Ther Adv Med Oncol. 2025 Feb 24;17:17588359251321904. doi: 10.1177/17588359251321904. eCollection 2025.
10
Frequency of somatic and germline variants of predisposition genes in young Chinese women with breast cancer.
Breast Cancer Res Treat. 2025 Apr;210(3):635-644. doi: 10.1007/s10549-024-07602-5. Epub 2025 Jan 5.

本文引用的文献

1
Adjuvant Endocrine Therapy in Premenopausal Breast Cancer: 12-Year Results From SOFT.
J Clin Oncol. 2023 Mar 1;41(7):1370-1375. doi: 10.1200/JCO.22.01065. Epub 2022 Dec 9.
3
Somatic and Germline Genomic Alterations in Very Young Women with Breast Cancer.
Clin Cancer Res. 2022 Jun 1;28(11):2339-2348. doi: 10.1158/1078-0432.CCR-21-2572.
7
Clinical utility of genomic signatures in young breast cancer patients: a systematic review.
NPJ Breast Cancer. 2020 Sep 25;6:46. doi: 10.1038/s41523-020-00188-3. eCollection 2020.
8
Clinical implications of prospective genomic profiling of metastatic breast cancer patients.
Breast Cancer Res. 2020 Aug 18;22(1):91. doi: 10.1186/s13058-020-01328-0.
9
Double mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors.
Science. 2019 Nov 8;366(6466):714-723. doi: 10.1126/science.aaw9032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验