He Shuonan, Shao Wanqing, Chen Shiyuan Cynthia, Wang Ting, Gibson Matthew C
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
Current Address: Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
bioRxiv. 2023 Jan 10:2023.01.09.523347. doi: 10.1101/2023.01.09.523347.
During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.
endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm and , two conserved homeobox-containing genes, establish segment polarity in The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.
在动物早期进化过程中,轴向极化节段的出现是复杂两侧对称动物身体结构多样化的核心。然而,节段极性通路究竟如何以及何时出现仍然不清楚。在这里,我们展示了前两侧对称动物海葵发育幼虫中节段极化的分子基础。利用空间转录组学,我们首先构建了发育幼虫节段的三维基因表达图谱。基于准确的预测,我们鉴定出了Lbx和Uncx,这两个保守的含同源异型结构域的基因,它们在BMP信号传导和Hox - Gbx级联反应的控制下占据相反的亚节段结构域。在功能上,诱变消除了幼虫阶段节段极化的所有分子证据,并导致初级息肉中牵缩肌出现异常的镜像对称模式。这些结果证明了一种前两侧对称动物中节段极性的分子基础,表明超过6亿年前刺胞动物 - 两侧对称动物的共同祖先中就存在极化的体节结构。
内中胚层组织形成体节,并显示出与两侧对称动物中胚层中观察到的相似的转录组特征。构建全面的三维基因表达图谱能够系统地剖析内中胚层中的节段身份。Lbx和Uncx这两个保守的含同源异型框基因在海葵中建立节段极性。刺胞动物 - 两侧对称动物的共同祖先可能拥有产生极化体节结构的遗传工具包。