Suppr超能文献

机器学习算法(哮喘/慢性阻塞性肺疾病[COPD]鉴别分类)工具与初级保健医生和肺科医生在哮喘、COPD 和哮喘/COPD 重叠患者中的诊断性能比较。

Diagnostic Performance of a Machine Learning Algorithm (Asthma/Chronic Obstructive Pulmonary Disease [COPD] Differentiation Classification) Tool Versus Primary Care Physicians and Pulmonologists in Asthma, COPD, and Asthma/COPD Overlap.

机构信息

General Practitioners Research Institute, Groningen, the Netherlands; University Medical Centre Groningen, GRIAC Research Institute, University of Groningen, Groningen, the Netherlands; Observational and Pragmatic Research Institute, Singapore.

Novartis Pharmaceuticals Corporation, East Hanover, NJ.

出版信息

J Allergy Clin Immunol Pract. 2023 May;11(5):1463-1474.e3. doi: 10.1016/j.jaip.2023.01.017. Epub 2023 Jan 28.

Abstract

BACKGROUND

The differential diagnosis of asthma and chronic obstructive pulmonary disease (COPD) poses a challenge in clinical practice and its misdiagnosis results in inappropriate treatment, increased exacerbations, and potentially death.

OBJECTIVE

To investigate the diagnostic accuracy of the Asthma/COPD Differentiation Classification (AC/DC) tool compared with primary care physicians and pulmonologists in asthma, COPD, and asthma-COPD overlap.

METHODS

The AC/DC machine learning-based diagnostic tool was developed using 12 parameters from electronic health records of more than 400,000 patients aged 35 years and older. An expert panel of three pulmonologists and four general practitioners from five countries evaluated 119 patient cases from a prospective observational study and provided a confirmed diagnosis (n = 116) of asthma (n = 53), COPD (n = 43), asthma-COPD overlap (n = 7), or other (n = 13). Cases were then reviewed by 180 primary care physicians and 180 pulmonologists from nine countries and by the AC/DC tool, and diagnostic accuracies were compared with reference to the expert panel diagnoses.

RESULTS

Average diagnostic accuracy of the AC/DC tool was superior to that of primary care physicians (median difference, 24%; 95% posterior credible interval: 17% to 29%; P < .0001) and was noninferior and superior (median difference, 12%; 95% posterior credible interval: 6% to 17%; P < .0001 for noninferiority and P = .0006 for superiority) to that of pulmonologists. Average diagnostic accuracies were 73%, 50%, and 61% by AC/DC tool, primary care physicians, and pulmonologists versus expert panel diagnosis, respectively.

CONCLUSION

The AC/DC tool demonstrated superior diagnostic accuracy compared with primary care physicians and pulmonologists in the diagnosis of asthma and COPD in patients aged 35 years and greater and has the potential to support physicians in the diagnosis of these conditions in clinical practice.

摘要

背景

在临床实践中,哮喘和慢性阻塞性肺疾病(COPD)的鉴别诊断具有挑战性,如果误诊会导致治疗不当、病情加重,甚至可能导致死亡。

目的

研究基于机器学习的哮喘/COPD 鉴别分类(AC/DC)工具与初级保健医生和肺病专家在哮喘、COPD 和哮喘-COPD 重叠患者中的诊断准确性。

方法

该 AC/DC 机器学习诊断工具使用了来自五个国家的 35 岁及以上 40 多万名患者的电子健康记录中的 12 个参数进行开发。一个由来自五个国家的三位肺病专家和四位全科医生组成的专家小组评估了来自前瞻性观察研究的 119 例患者病例,并提供了明确的诊断(n=116):哮喘(n=53)、COPD(n=43)、哮喘-COPD 重叠(n=7)或其他(n=13)。然后,来自九个国家的 180 名初级保健医生和 180 名肺病专家以及 AC/DC 工具对这些病例进行了审查,并与专家小组的诊断结果进行了比较,以评估诊断准确性。

结果

AC/DC 工具的平均诊断准确性优于初级保健医生(中位数差异为 24%;95%后验可信区间:17%至 29%;P<0.0001),且与肺病专家相比,其非劣效性和优效性(中位数差异为 12%;95%后验可信区间:6%至 17%;P<0.0001 表示非劣效性,P=0.0006 表示优效性)更高。AC/DC 工具、初级保健医生和肺病专家的平均诊断准确率分别为 73%、50%和 61%,与专家小组的诊断结果相比。

结论

AC/DC 工具在诊断 35 岁及以上患者的哮喘和 COPD 方面的诊断准确性优于初级保健医生和肺病专家,并且有可能在临床实践中为医生提供这些疾病的诊断支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验