Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
Data Lab / Applied Physics, Vrije Universiteit Brussel, 1050, Brussel, Belgium.
Nat Commun. 2023 Jan 30;14(1):495. doi: 10.1038/s41467-023-35956-9.
Optical resonators enable the generation, manipulation, and storage of electromagnetic waves. The physics underlying their operation is determined by the interference of electromagnetic waves, giving rise to the resonance spectrum. This mechanism causes the limitations and trade-offs of resonator design, such as the fixed relationship between free spectral range, modal linewidth, and the resonator's refractive index and size. Here, we introduce a new class of optical resonators, generating resonances by designing the optical path through transverse mode coupling in a cascaded process created by mode-converting mirrors. The generalized round-trip phase condition leads to resonator characteristics that are markedly different from Fabry-Perot resonators and can be tailored over a wide range. We confirm the existence of these modes experimentally in an integrated waveguide cavity with mode converters coupling transverse modes into one supermode. We also demonstrate a transverse mode-independent transmission and show that its engineered spectral properties agree with theoretical predictions.
光学谐振器可用于产生、操控和存储电磁波。其工作的物理基础是电磁波的干涉,由此产生共振光谱。这种机制导致了谐振器设计的局限性和权衡,例如自由光谱范围、模式线宽以及谐振器折射率和尺寸之间的固定关系。在这里,我们介绍了一类新型的光学谐振器,通过在由模式转换镜构成的级联过程中通过横向模式耦合来设计光路,从而产生共振。广义的往返相位条件导致了与法布里-珀罗谐振器明显不同的谐振器特性,并且可以在很宽的范围内进行调整。我们通过在具有模式转换器的集成波导腔中实验证实了这些模式的存在,这些模式转换器将横向模式耦合成一个超模。我们还展示了与横向模式无关的传输,并表明其设计的光谱特性与理论预测相符。