Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing100084, China.
Ministry of Education Ecological Field Station for East Asian Migratory Birds, Beijing100084, China.
Environ Sci Technol. 2023 Feb 14;57(6):2474-2483. doi: 10.1021/acs.est.2c05253. Epub 2023 Feb 1.
The production of bioenergy with carbon capture and storage (BECCS) is a pivotal negative emission technology. The cultivation of dedicated crops for BECCS impacts the temperature through two processes: net CO removal (CDR) from the atmosphere (biogeochemical cooling) and changes in the local energy balance (biophysical warming or cooling). Here, we compare the magnitude of these two processes for key grass and tree species envisioned for large-scale bioenergy crop cultivation, following economically plausible scenarios using Earth System Models. By the end of this century, the cumulative CDR from the cultivation of eucalypt (72-112 Pg C) is larger than that of switchgrass (34-83 Pg C) because of contrasting contributions of land use change carbon emissions. The combined biogeochemical and biophysical effects are cooling (-0.26 to -0.04 °C) at the global scale, but 13-28% of land areas still have net warming signals, mainly due to the spatial heterogeneity of the biophysical effects. Our study shows that the deployment of bioenergy crop cultivation should not only be guided by the principles of maximizing yield and CDR but should also take an integrated perspective that includes all relevant Earth system feedbacks.
生物能源碳捕获与封存(BECCS)的生产是一种关键的负排放技术。专门用于 BECCS 的作物的种植通过两个过程影响温度:从大气中净去除 CO(生物地球化学冷却)和当地能量平衡的变化(生物物理变暖或冷却)。在这里,我们使用地球系统模型,根据经济上合理的情景,比较了为大规模生物能源作物种植设想的主要草本和木本物种的这两个过程的规模。到本世纪末,由于土地利用变化碳排放的不同贡献,桉树(72-112PgC)的累积 CDR 大于柳枝稷(34-83PgC)。在全球范围内,综合生物地球化学和生物物理效应是冷却(-0.26 至-0.04°C),但仍有 13-28%的土地面积存在净变暖信号,这主要是由于生物物理效应的空间异质性造成的。我们的研究表明,生物能源作物种植的部署不仅应遵循最大化产量和 CDR 的原则,还应采取包括所有相关地球系统反馈的综合观点。