Howe L, Castellanos-Beltran M A, Sirois A J, Olaya D, Biesecker J, Dresselhaus P D, Benz S P, Hopkins P F
National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
University of Colorado, Boulder, Colorado 80309, USA.
PRX quantum. 2020 Mar;3(1). doi: 10.1103/prxquantum.3.010350.
Scaling of quantum computers to fault-tolerant levels relies critically on the integration of energy-efficient, stable, and reproducible qubit control and readout electronics. In comparison to traditional semiconductor-control electronics (TSCE) located at room temperature, the signals generated by rf sources based on Josephson-junctions (JJs) benefit from small device sizes, low power dissipation, intrinsic calibration, superior reproducibility, and insensitivity to ambient fluctuations. Previous experiments to colocate qubits and JJ-based control electronics have resulted in quasiparticle poisoning of the qubit, degrading the coherence and lifetime of the qubit. In this paper, we digitally control a 0.01-K transmon qubit with pulses from a Josephson pulse generator (JPG) located at the 3-K stage of a dilution refrigerator. We directly compare the qubit lifetime , the coherence time , and the thermal occupation when the qubit is controlled by the JPG circuit versus the TSCE setup. We find agreement to within the daily fluctuations of ±0.5 s and ±2 s for and , respectively, and agreement to within the 1% error for . Additionally, we perform randomized benchmarking to measure an average JPG gate error of 2.1 × 10. In combination with a small device size ( 25 mm) and low on-chip power dissipation (≪100 W), these results are an important step toward demonstrating the viability of using JJ-based control electronics located at temperature stages higher than the mixing-chamber stage in highly scaled superconducting quantum information systems.
将量子计算机扩展到容错水平关键依赖于高效节能、稳定且可重现的量子比特控制和读出电子设备的集成。与位于室温的传统半导体控制电子设备(TSCE)相比,基于约瑟夫森结(JJ)的射频源产生的信号具有器件尺寸小、功耗低、固有校准、卓越的可重复性以及对环境波动不敏感等优点。先前将量子比特与基于JJ的控制电子设备并置的实验导致了量子比特的准粒子中毒,降低了量子比特的相干性和寿命。在本文中,我们使用位于稀释制冷机3K级的约瑟夫森脉冲发生器(JPG)产生的脉冲对一个0.01K的跨导量子比特进行数字控制。我们直接比较了由JPG电路控制量子比特时与TSCE设置下的量子比特寿命T1、相干时间T2以及热占据数nth。我们发现T1和T2分别在±0.5秒和±2秒的每日波动范围内相符,nth在1%的误差范围内相符。此外,我们进行了随机基准测试,以测量平均JPG门误差为2.1×10⁻³。结合小器件尺寸(25平方毫米)和低片上功耗(≪100微瓦),这些结果是朝着证明在高度规模化的超导量子信息系统中使用位于高于混合腔级温度阶段的基于JJ的控制电子设备的可行性迈出的重要一步。