Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA.
Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Johns Hopkins University Department of Biology, Baltimore, MD 21218, USA.
Neuron. 2023 Feb 1;111(3):328-344.e7. doi: 10.1016/j.neuron.2023.01.007.
The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.
哺乳动物的脊髓作为一个细胞类型的共同体,具有感觉处理、自主控制和运动功能。虽然动物模型已经提高了我们对脊髓细胞多样性的理解,但直接描述人类生物学对于揭示基本功能和人类病理学的专门特征很重要。在这里,我们使用单细胞 RNA 测序和空间转录组学以及抗体验证,展示了成人脊髓的细胞分类法。我们鉴定了 29 个神经胶质簇和 35 个神经元簇,这些簇主要按解剖位置组织。为了证明该资源与人类疾病的相关性,我们分析了在肌萎缩侧索硬化症(ALS)和其他疾病中退化的脊髓运动神经元。我们发现,与其他脊髓神经元相比,人类运动神经元的特征是与细胞大小、细胞骨架结构和 ALS 相关的基因,这表明其选择性易损性背后存在专门的分子组成。我们还提供了一个网络资源,以方便对人类脊髓生物学的进一步研究。