Zhang Jingfan, Li Zhaoxiang, Wang Shuai, Dai Yuan, Zhang Ruirui, Lai Jie, Zhang Dongsheng, Chen Ke, Hu Jie, Gao Weinan, Tang Jianshi, Zheng Yu
Tencent Robotics X, Tencent Holdings, Shenzhen, Guangdong, China.
School of Computer Science, Yangtze University, Jingzhou, Hubei, China.
Front Neurorobot. 2023 Jan 12;16:1102259. doi: 10.3389/fnbot.2022.1102259. eCollection 2022.
The dynamics of a robot may vary during operation due to both internal and external factors, such as non-ideal motor characteristics and unmodeled loads, which would lead to control performance deterioration and even instability. In this paper, the adaptive optimal output regulation (AOOR)-based controller is designed for the wheel-legged robot Ollie to deal with the possible model uncertainties and disturbances in a data-driven approach. We test the AOOR-based controller by forcing the robot to stand still, which is a conventional index to judge the balance controller for two-wheel robots. By online training with small data, the resultant AOOR achieves the optimality of the control performance and stabilizes the robot within a small displacement in rich experiments with different working conditions. Finally, the robot further balances a rolling cylindrical bottle on its top with the balance control using the AOOR, but it fails with the initial controller. Experimental results demonstrate that the AOOR-based controller shows the effectiveness and high robustness with model uncertainties and external disturbances.
由于内部和外部因素,如非理想的电机特性和未建模的负载,机器人在运行过程中的动力学可能会发生变化,这将导致控制性能下降甚至不稳定。本文针对轮腿式机器人Ollie设计了基于自适应最优输出调节(AOOR)的控制器,以数据驱动的方法处理可能的模型不确定性和干扰。我们通过迫使机器人静止不动来测试基于AOOR的控制器,这是判断两轮机器人平衡控制器的传统指标。通过小数据在线训练,所得的AOOR实现了控制性能的最优性,并在不同工作条件的丰富实验中使机器人在小位移范围内稳定。最后,机器人使用AOOR通过平衡控制在其顶部进一步平衡一个滚动的圆柱形瓶子,但使用初始控制器时则失败了。实验结果表明,基于AOOR的控制器在模型不确定性和外部干扰方面表现出有效性和高鲁棒性。