Suppr超能文献

大肠杆菌在从丰富培养基到基础培养基的转变过程中,酶表达动力学取决于蛋白质组储备。

Enzyme expression kinetics by Escherichia coli during transition from rich to minimal media depends on proteome reserves.

机构信息

Department of Physics, U.C. San Diego, La Jolla, CA, USA.

Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany.

出版信息

Nat Microbiol. 2023 Feb;8(2):347-359. doi: 10.1038/s41564-022-01310-w. Epub 2023 Feb 3.

Abstract

Bacterial fitness depends on adaptability to changing environments. In rich growth medium, which is replete with amino acids, Escherichia coli primarily expresses protein synthesis machineries, which comprise ~40% of cellular proteins and are required for rapid growth. Upon transition to minimal medium, which lacks amino acids, biosynthetic enzymes are synthesized, eventually reaching ~15% of cellular proteins when growth fully resumes. We applied quantitative proteomics to analyse the timing of enzyme expression during such transitions, and established a simple positive relation between the onset time of enzyme synthesis and the fractional enzyme 'reserve' maintained by E. coli while growing in rich media. We devised and validated a coarse-grained kinetic model that quantitatively captures the enzyme recovery kinetics in different pathways, solely on the basis of proteomes immediately preceding the transition and well after its completion. Our model enables us to infer regulatory strategies underlying the 'as-needed' gene expression programme adopted by E. coli.

摘要

细菌的适应性取决于其对环境变化的适应能力。在富含氨基酸的丰富生长培养基中,大肠杆菌主要表达蛋白质合成机器,这些机器约占细胞蛋白质的 40%,是快速生长所必需的。当过渡到缺乏氨基酸的基本培养基时,合成生物合成酶,当生长完全恢复时,最终达到细胞蛋白质的约 15%。我们应用定量蛋白质组学来分析这种转变过程中酶表达的时间,并且在大肠杆菌在丰富的培养基中生长时,建立了一个简单的正相关关系,即酶合成的起始时间与大肠杆菌维持的酶“储备”分数之间的关系。我们设计并验证了一个粗粒度的动力学模型,该模型仅基于转变之前和完成之后的蛋白质组,就可以定量捕获不同途径中的酶恢复动力学。我们的模型使我们能够推断出大肠杆菌采用的“按需”基因表达程序背后的调控策略。

相似文献

1
Enzyme expression kinetics by Escherichia coli during transition from rich to minimal media depends on proteome reserves.
Nat Microbiol. 2023 Feb;8(2):347-359. doi: 10.1038/s41564-022-01310-w. Epub 2023 Feb 3.
2
Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate.
Res Microbiol. 2020 Jul-Sep;171(5-6):185-193. doi: 10.1016/j.resmic.2020.02.001. Epub 2020 Feb 11.
3
Deuterium induces a distinctive proteome that correlates with the reduction in growth rate.
J Biol Chem. 2019 Feb 15;294(7):2279-2292. doi: 10.1074/jbc.RA118.006914. Epub 2018 Dec 13.
4
How Does Allocate Proteome?
ACS Synth Biol. 2024 Sep 20;13(9):2718-2732. doi: 10.1021/acssynbio.3c00537. Epub 2024 Aug 9.
5
The metabolic potential of Escherichia coli BL21 in defined and rich medium.
Microb Cell Fact. 2014 Mar 23;13(1):45. doi: 10.1186/1475-2859-13-45.
6
Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium.
J Proteome Res. 2013 Jun 7;12(6):2611-21. doi: 10.1021/pr3011843. Epub 2013 May 2.
7
Proteome reallocation in Escherichia coli with increasing specific growth rate.
Mol Biosyst. 2015 Apr;11(4):1184-93. doi: 10.1039/c4mb00721b.
8
Differential quantitative proteome analysis of Escherichia coli grown on acetate versus glucose.
Proteomics. 2016 Nov;16(21):2742-2746. doi: 10.1002/pmic.201600303. Epub 2016 Oct 10.
10
A global resource allocation strategy governs growth transition kinetics of Escherichia coli.
Nature. 2017 Nov 2;551(7678):119-123. doi: 10.1038/nature24299. Epub 2017 Oct 25.

引用本文的文献

1
Local c-di-GMP signaling, triggered by cross-regulation of cAMP-CRP and c-di-GMP, controls biofilm formation under nutrient limitation.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2516964122. doi: 10.1073/pnas.2516964122. Epub 2025 Aug 25.
3
The Escherichia coli replication initiator DnaA is titrated on the chromosome.
Nat Commun. 2025 Aug 21;16(1):7813. doi: 10.1038/s41467-025-63147-1.
4
Minimization of proteome reallocation explains metabolic transition in hierarchical utilization of carbon sources.
mSystems. 2025 Jul 22;10(7):e0069025. doi: 10.1128/msystems.00690-25. Epub 2025 Jun 30.
5
Distantly related bacteria share a rigid proteome allocation strategy with flexible enzyme kinetics.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2427091122. doi: 10.1073/pnas.2427091122. Epub 2025 Apr 29.
6
Direct Quantification of Protein-Protein Interactions in Living Bacterial Cells.
Adv Sci (Weinh). 2025 May;12(19):e2414777. doi: 10.1002/advs.202414777. Epub 2025 Mar 24.
7
Biosensor characterization: formal methods from the perspective of proteome fractions.
Synth Biol (Oxf). 2025 Feb 12;10(1):ysaf002. doi: 10.1093/synbio/ysaf002. eCollection 2025.
8
A framework for understanding collective microbiome metabolism.
Nat Microbiol. 2024 Dec;9(12):3097-3109. doi: 10.1038/s41564-024-01850-3. Epub 2024 Nov 26.
9
Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains.
Nat Commun. 2024 Nov 5;15(1):9567. doi: 10.1038/s41467-024-53992-x.
10
Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria.
Nat Commun. 2024 Oct 20;15(1):9051. doi: 10.1038/s41467-024-53446-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验