Zhang Yichen, Du Kai, Huang Tiejun
School of Computer Science, Peking University, Beijing 100871, China
School of Computer Science and Institute for Artificial Intelligence, Peking University, Beijing 100871, China
Neural Comput. 2023 Mar 18;35(4):627-644. doi: 10.1162/neco_a_01565.
Biophysically detailed neuron simulation is a powerful tool to explore the mechanisms behind biological experiments and bridge the gap between various scales in neuroscience research. However, the extremely high computational complexity of detailed neuron simulation restricts the modeling and exploration of detailed network models. The bottleneck is solving the system of linear equations. To accelerate detailed simulation, we propose a heuristic tree-partition-based parallel method (HTP) to parallelize the computation of the Hines algorithm, the kernel for solving linear equations, and leverage the strong parallel capability of the graphic processing unit (GPU) to achieve further speedup. We formulate the problem of how to get a fine parallel process as a tree-partition problem. Next, we present a heuristic partition algorithm to obtain an effective partition to efficiently parallelize the equation-solving process in detailed simulation. With further optimization on GPU, our HTP method achieves 2.2 to 8.5 folds speedup compared to the state-of-the-art GPU method and 36 to 660 folds speedup compared to the typical Hines algorithm.
生物物理细节的神经元模拟是探索生物学实验背后机制以及弥合神经科学研究中不同尺度之间差距的强大工具。然而,细节神经元模拟极高的计算复杂度限制了详细网络模型的建模与探索。瓶颈在于求解线性方程组。为加速详细模拟,我们提出一种基于启发式树划分的并行方法(HTP),将用于求解线性方程组的内核——海因斯算法的计算并行化,并利用图形处理单元(GPU)强大的并行能力实现进一步加速。我们将如何获得精细并行过程的问题表述为树划分问题。接下来,我们提出一种启发式划分算法以获得有效划分,从而在详细模拟中高效并行化方程求解过程。通过在GPU上进一步优化,我们的HTP方法与最先进的GPU方法相比实现了2.2至8.5倍的加速,与典型的海因斯算法相比实现了36至660倍的加速。