Suppr超能文献

利用机器学习技术预测卢旺达五岁以下儿童发育迟缓

Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques.

机构信息

African Centre of Excellence in Data Science, University of Rwanda, Kigali, Rwanda.

University of Rwanda College of Science and Technology, Kigali, Rwanda.

出版信息

J Prev Med Public Health. 2023 Jan;56(1):41-49. doi: 10.3961/jpmph.22.388. Epub 2023 Jan 6.

Abstract

OBJECTIVES

Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children.

METHODS

The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen.

RESULTS

The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status.

CONCLUSIONS

Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.

摘要

目的

卢旺达在 2020 年报告的发育迟缓率为 33%,低于 2015 年的 38%;然而,发育迟缓仍然是一个问题。全球范围内,因营养不良而导致的儿童死亡人数为 45%。对于早期发现和治疗发育迟缓,应将最佳选择作为社区政策重点,而卫生服务仍然是一个问题。因此,本研究旨在为卢旺达儿童制定一个预测发育迟缓的模型。

方法

本研究使用 2019-2020 年卢旺达人口与健康调查的二次数据。采用分层 10 折交叉验证,训练不同的机器学习分类器来预测发育迟缓状况。使用不同的指标比较预测模型,并选择最佳模型。

结果

使用梯度提升分类器算法开发了最佳模型,根据几个模型的性能指标,该模型的训练准确率为 80.49%。基于混淆矩阵,计算出测试准确率、敏感度、特异性和 F1,模型能够正确分类发育迟缓病例的能力为 79.33%,准确识别发育迟缓儿童的能力为 72.51%,正确分类非发育迟缓儿童的能力为 94.49%,曲线下面积为 0.89。该模型发现,母亲的身高、电视、孩子的年龄、省份、母亲的教育程度、出生体重和分娩大小是预测发育迟缓状况的最重要因素。

结论

因此,机器学习技术可以在卢旺达用于构建一个准确的模型,该模型可以检测发育迟缓的早期阶段,并提供最佳的预测属性,以帮助预防和控制卢旺达五岁以下儿童的发育迟缓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efc5/9925281/0e3f436d2ec7/jpmph-22-388f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验