School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406, MS, USA.
Nat Commun. 2023 Feb 6;14(1):639. doi: 10.1038/s41467-023-36362-x.
The ability to manufacture ordered mesoporous materials using low-cost precursors and scalable processes is essential for unlocking their enormous potential to enable advancement in nanotechnology. While templating-based methods play a central role in the development of mesoporous materials, several limitations exist in conventional system design, including cost, volatile solvent consumption, and attainable pore sizes from commercial templating agents. This work pioneers a new manufacturing platform for producing ordered mesoporous materials through direct pyrolysis of crosslinked thermoplastic elastomer-based block copolymers. Specifically, olefinic majority phases are selectively crosslinked through sulfonation reactions and subsequently converted to carbon, while the minority block can be decomposed to form ordered mesopores. We demonstrate that this process can be extended to different polymer precursors for synthesizing mesoporous polymer, carbon, and silica. Furthermore, the obtained carbons possess large mesopores, sulfur-doped carbon framework, with tailorable pore textures upon varying the precursor identities.
能够使用低成本前体和可扩展的工艺制造有序介孔材料对于释放其在纳米技术进步方面的巨大潜力至关重要。虽然基于模板的方法在介孔材料的开发中起着核心作用,但传统系统设计存在一些局限性,包括成本、挥发性溶剂消耗以及商业模板剂可达到的孔径。这项工作开创了通过交联热塑性弹性体基嵌段共聚物的直接热解生产有序介孔材料的新制造平台。具体来说,通过磺化反应选择性地交联烯烃为主的相,然后将其转化为碳,而少数嵌段可以分解形成有序介孔。我们证明,该过程可以扩展到不同的聚合物前体,用于合成介孔聚合物、碳和二氧化硅。此外,所获得的碳具有大的介孔、硫掺杂的碳骨架,并且可以通过改变前体的身份来调整孔结构。