Psychology Department, Princeton University, Princeton, New Jersey, USA.
Psychology Department, University of South Carolina, Columbia, SC, USA.
Infancy. 2023 May;28(3):507-531. doi: 10.1111/infa.12521. Epub 2023 Feb 7.
Understanding the trends and predictors of attrition rate, or the proportion of collected data that is excluded from the final analyses, is important for accurate research planning, assessing data integrity, and ensuring generalizability. In this pre-registered meta-analysis, we reviewed 182 publications in infant (0-24 months) functional near-infrared spectroscopy (fNIRS) research published from 1998 to April 9, 2020, and investigated the trends and predictors of attrition. The average attrition rate was 34.23% among 272 experiments across all 182 publications. Among a subset of 136 experiments that reported the specific reasons for subject exclusion, 21.50% of the attrition was infant-driven, while 14.21% was signal-driven. Subject characteristics (e.g., age) and study design (e.g., fNIRS cap configuration, block/trial design, and stimulus type) predicted the total and subject-driven attrition rates, suggesting that modifying the recruitment pool or the study design can meaningfully reduce the attrition rate in infant fNIRS research. Based on the findings, we established guidelines for reporting the attrition rate for scientific transparency and made recommendations to minimize the attrition rates. This research can facilitate developmental cognitive neuroscientists in their quest toward increasingly rigorous and representative research.
了解失效率(即从最终分析中排除的已收集数据的比例)的趋势和预测因素对于准确的研究计划、评估数据完整性和确保普遍性非常重要。在这项预先注册的荟萃分析中,我们回顾了 1998 年至 2020 年 4 月 9 日期间发表的 182 篇婴儿(0-24 个月)功能近红外光谱(fNIRS)研究出版物,并调查了失效率的趋势和预测因素。在所有 182 篇出版物中的 272 项实验中,平均失效率为 34.23%。在报告了受试者排除具体原因的 136 项实验的子集中,21.50%的失效率是由婴儿驱动的,而 14.21%是由信号驱动的。受试者特征(例如年龄)和研究设计(例如 fNIRS 帽配置、块/试验设计和刺激类型)预测了总失效率和由受试者驱动的失效率,这表明修改招募对象或研究设计可以显著降低婴儿 fNIRS 研究中的失效率。基于这些发现,我们为报告失效率制定了科学透明度报告指南,并提出了建议以最大限度地降低失效率。这项研究可以促进发展认知神经科学家追求更严格和更具代表性的研究。