Suppr超能文献

机器学习和预测在胎儿、婴儿和学步儿神经影像学中的应用:综述与入门。

Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer.

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.

Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.

出版信息

Biol Psychiatry. 2023 May 15;93(10):893-904. doi: 10.1016/j.biopsych.2022.10.014. Epub 2022 Oct 29.

Abstract

Predictive models in neuroimaging are increasingly designed with the intent to improve risk stratification and support interventional efforts in psychiatry. Many of these models have been developed in samples of children school-aged or older. Nevertheless, despite growing evidence that altered brain maturation during the fetal, infant, and toddler (FIT) period modulates risk for poor mental health outcomes in childhood, these models are rarely implemented in FIT samples. Applications of predictive modeling in children of these ages provide an opportunity to develop powerful tools for improved characterization of the neural mechanisms underlying development. To facilitate the broader use of predictive models in FIT neuroimaging, we present a brief primer and systematic review on the methods used in current predictive modeling FIT studies. Reflecting on current practices in more than 100 studies conducted over the past decade, we provide an overview of topics, modalities, and methods commonly used in the field and under-researched areas. We then outline ethical and future considerations for neuroimaging researchers interested in predicting health outcomes in early life, including researchers who may be relatively new to either advanced machine learning methods or using FIT data. Altogether, the last decade of FIT research in machine learning has provided a foundation for accelerating the prediction of early-life trajectories across the full spectrum of illness and health.

摘要

神经影像学中的预测模型越来越多地被设计用于改善风险分层,并为精神病学的干预措施提供支持。这些模型中的许多都是在儿童学龄期或更大的样本中开发的。然而,尽管越来越多的证据表明,胎儿、婴儿和幼儿(FIT)期大脑成熟的改变会增加儿童时期心理健康不良结果的风险,但这些模型很少在 FIT 样本中实施。在这些年龄段的儿童中应用预测建模为开发强大的工具提供了机会,以更好地描述发育背后的神经机制。为了促进预测模型在 FIT 神经影像学中的更广泛应用,我们提供了一个简短的入门指南和对当前 FIT 研究中使用的预测建模方法的系统综述。在反思过去十年中进行的 100 多项研究中的当前实践后,我们提供了该领域常用主题、模态和方法的概述,以及研究不足的领域。然后,我们概述了对预测早期生命健康结果感兴趣的神经影像学研究人员的伦理和未来考虑因素,包括可能相对较新的高级机器学习方法或使用 FIT 数据的研究人员。总之,过去十年的 FIT 机器学习研究为加速预测整个疾病和健康谱中的早期生命轨迹提供了基础。

相似文献

1
Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer.
Biol Psychiatry. 2023 May 15;93(10):893-904. doi: 10.1016/j.biopsych.2022.10.014. Epub 2022 Oct 29.
2
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
3
Surgical interventions for bilateral congenital cataract in children aged two years and under.
Cochrane Database Syst Rev. 2022 Sep 15;9(9):CD003171. doi: 10.1002/14651858.CD003171.pub3.
4
Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth.
Cochrane Database Syst Rev. 2022 Aug 9;8(8):CD006764. doi: 10.1002/14651858.CD006764.pub4.
6
Grommets (ventilation tubes) for hearing loss associated with otitis media with effusion in children.
Cochrane Database Syst Rev. 2005 Jan 25(1):CD001801. doi: 10.1002/14651858.CD001801.pub2.
8
Heliox for croup in children.
Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD006822. doi: 10.1002/14651858.CD006822.pub6.
10
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

引用本文的文献

2
Measuring and interpreting individual differences in fetal, infant, and toddler neurodevelopment.
Dev Cogn Neurosci. 2025 Mar 1;73:101539. doi: 10.1016/j.dcn.2025.101539.
3
Brain age prediction and deviations from normative trajectories in the neonatal connectome.
Nat Commun. 2024 Nov 26;15(1):10251. doi: 10.1038/s41467-024-54657-5.
5
Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy.
Brain Struct Funct. 2024 Dec;229(9):2445-2459. doi: 10.1007/s00429-024-02853-w. Epub 2024 Sep 24.
6
Brain-phenotype predictions can survive across diverse real-world data.
bioRxiv. 2024 Jan 24:2024.01.23.576916. doi: 10.1101/2024.01.23.576916.

本文引用的文献

1
Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging.
IEEE Signal Process Mag. 2022 Jul;39(4):107-118. doi: 10.1109/MSP.2022.3155951. Epub 2022 Jun 28.
2
Statistical quantification of confounding bias in machine learning models.
Gigascience. 2022 Aug 26;11. doi: 10.1093/gigascience/giac082.
3
Brain-phenotype models fail for individuals who defy sample stereotypes.
Nature. 2022 Sep;609(7925):109-118. doi: 10.1038/s41586-022-05118-w. Epub 2022 Aug 24.
4
An Opportunity to Increase Collaborative Science in Fetal, Infant, and Toddler Neuroimaging.
Biol Psychiatry. 2023 May 15;93(10):864-866. doi: 10.1016/j.biopsych.2022.07.005. Epub 2022 Jul 21.
5
Real-time motion monitoring improves functional MRI data quality in infants.
Dev Cogn Neurosci. 2022 Jun;55:101116. doi: 10.1016/j.dcn.2022.101116. Epub 2022 May 21.
7
General factors of white matter microstructure from DTI and NODDI in the developing brain.
Neuroimage. 2022 Jul 1;254:119169. doi: 10.1016/j.neuroimage.2022.119169. Epub 2022 Apr 1.
8
Linking interindividual variability in brain structure to behaviour.
Nat Rev Neurosci. 2022 May;23(5):307-318. doi: 10.1038/s41583-022-00584-7. Epub 2022 Apr 1.
9
Neonatal multi-modal cortical profiles predict 18-month developmental outcomes.
Dev Cogn Neurosci. 2022 Apr;54:101103. doi: 10.1016/j.dcn.2022.101103. Epub 2022 Mar 24.
10
Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity.
Sci Adv. 2022 Mar 18;8(11):eabj1812. doi: 10.1126/sciadv.abj1812. Epub 2022 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验