Suppr超能文献

预防阿尔茨海默病淀粉样蛋白成像联盟:一项具有全球影响力的欧洲合作项目。

The amyloid imaging for the prevention of Alzheimer's disease consortium: A European collaboration with global impact.

作者信息

Collij Lyduine E, Farrar Gill, Valléz García David, Bader Ilona, Shekari Mahnaz, Lorenzini Luigi, Pemberton Hugh, Altomare Daniele, Pla Sandra, Loor Mery, Markiewicz Pawel, Yaqub Maqsood, Buckley Christopher, Frisoni Giovanni B, Nordberg Agneta, Payoux Pierre, Stephens Andrew, Gismondi Rossella, Visser Pieter Jelle, Ford Lisa, Schmidt Mark, Birck Cindy, Georges Jean, Mett Anja, Walker Zuzana, Boada Mercé, Drzezga Alexander, Vandenberghe Rik, Hanseeuw Bernard, Jessen Frank, Schöll Michael, Ritchie Craig, Lopes Alves Isadora, Gispert Juan Domingo, Barkhof Frederik

机构信息

Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands.

Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.

出版信息

Front Neurol. 2023 Jan 20;13:1063598. doi: 10.3389/fneur.2022.1063598. eCollection 2022.

Abstract

BACKGROUND

Amyloid-β (Aβ) accumulation is considered the earliest pathological change in Alzheimer's disease (AD). The Amyloid Imaging to Prevent Alzheimer's Disease (AMYPAD) consortium is a collaborative European framework across European Federation of Pharmaceutical Industries Associations (EFPIA), academic, and 'Small and Medium-sized enterprises' (SME) partners aiming to provide evidence on the clinical utility and cost-effectiveness of Positron Emission Tomography (PET) imaging in diagnostic work-up of AD and to support clinical trial design by developing optimal quantitative methodology in an early AD population.

THE AMYPAD STUDIES

In the Diagnostic and Patient Management Study (DPMS), 844 participants from eight centres across three clinical subgroups (245 subjective cognitive decline, 342 mild cognitive impairment, and 258 dementia) were included. The Prognostic and Natural History Study (PNHS) recruited pre-dementia subjects across 11 European parent cohorts (PCs). Approximately 1600 unique subjects with historical and prospective data were collected within this study. PET acquisition with [F]flutemetamol or [F]florbetaben radiotracers was performed and quantified using the Centiloid (CL) method.

RESULTS

AMYPAD has significantly contributed to the AD field by furthering our understanding of amyloid deposition in the brain and the optimal methodology to measure this process. Main contributions so far include the validation of the dual-time window acquisition protocol to derive the fully quantitative non-displaceable binding potential (BP ), assess the value of this metric in the context of clinical trials, improve PET-sensitivity to emerging Aβ burden and utilize its available regional information, establish the quantitative accuracy of the Centiloid method across tracers and support implementation of quantitative amyloid-PET measures in the clinical routine.

FUTURE STEPS

The AMYPAD consortium has succeeded in recruiting and following a large number of prospective subjects and setting up a collaborative framework to integrate data across European PCs. Efforts are currently ongoing in collaboration with ARIDHIA and ADDI to harmonize, integrate, and curate all available clinical data from the PNHS PCs, which will become openly accessible to the wider scientific community.

摘要

背景

淀粉样β蛋白(Aβ)积累被认为是阿尔茨海默病(AD)最早的病理变化。预防阿尔茨海默病淀粉样成像(AMYPAD)联盟是一个由欧洲制药工业协会联合会(EFPIA)、学术界和“中小企业”(SME)合作伙伴组成的欧洲合作框架,旨在提供正电子发射断层扫描(PET)成像在AD诊断检查中的临床效用和成本效益的证据,并通过在早期AD人群中开发最佳定量方法来支持临床试验设计。

AMYPAD研究:在诊断与患者管理研究(DPMS)中,纳入了来自三个临床亚组(245例主观认知衰退、342例轻度认知障碍和258例痴呆)的八个中心的844名参与者。预后与自然史研究(PNHS)在11个欧洲母队列(PC)中招募了痴呆前受试者。在这项研究中收集了大约1600名具有历史和前瞻性数据的独特受试者。使用[F]氟代美他莫或[F]氟贝他班放射性示踪剂进行PET采集,并使用百分制(CL)方法进行定量。

结果

AMYPAD通过加深我们对大脑中淀粉样蛋白沉积以及测量这一过程的最佳方法的理解,对AD领域做出了重大贡献。迄今为止的主要贡献包括验证双时间窗采集方案以得出完全定量的不可置换结合潜能(BP ),在临床试验背景下评估该指标的价值,提高PET对新出现的Aβ负担的敏感性并利用其可用的区域信息,确定百分制方法在不同示踪剂中的定量准确性,并支持在临床常规中实施定量淀粉样蛋白PET测量。

未来步骤

AMYPAD联盟成功招募并跟踪了大量前瞻性受试者,并建立了一个合作框架以整合欧洲PC中的数据。目前正在与ARIDHIA和ADDI合作,协调、整合和整理来自PNHS PC的所有可用临床数据,这些数据将向更广泛的科学界开放获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6153/9907029/9124c1d22204/fneur-13-1063598-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验