Suppr超能文献

基于最优时频卷积网络的心电信号分类用于远程健康监测。

ECG Classification Using an Optimal Temporal Convolutional Network for Remote Health Monitoring.

机构信息

Institut Jean Lamour (UMR 7198), University of Lorraine, 54011 Nancy, France.

School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.

出版信息

Sensors (Basel). 2023 Feb 3;23(3):1697. doi: 10.3390/s23031697.

Abstract

Increased life expectancy in most countries is a result of continuous improvements at all levels, starting from medicine and public health services, environmental and personal hygiene to the use of the most advanced technologies by healthcare providers. Despite these significant improvements, especially at the technological level in the last few decades, the overall access to healthcare services and medical facilities worldwide is not equally distributed. Indeed, the end beneficiary of these most advanced healthcare services and technologies on a daily basis are mostly residents of big cities, whereas the residents of rural areas, even in developed countries, have major difficulties accessing even basic medical services. This may lead to huge deficiencies in timely medical advice and assistance and may even cause death in some cases. Remote healthcare is considered a serious candidate for facilitating access to health services for all; thus, by using the most advanced technologies, providing at the same time high quality diagnosis and ease of implementation and use. ECG analysis and related cardiac diagnosis techniques are the basic healthcare methods providing rapid insights in potential health issues through simple visualization and interpretation by clinicians or by automatic detection of potential cardiac anomalies. In this paper, we propose a novel machine learning (ML) architecture for the ECG classification regarding five heart diseases based on temporal convolution networks (TCN). The proposed design, which implements a dilated causal one-dimensional convolution on the input heartbeat signals, seems to be outperforming all existing ML methods with an accuracy of 96.12% and an F1 score of 84.13%, using a reduced number of parameters (10.2 K). Such results make the proposed TCN architecture a good candidate for low power consumption hardware platforms, and thus its potential use in low cost embedded devices for remote health monitoring.

摘要

在大多数国家,预期寿命的延长是医疗和公共卫生服务、环境和个人卫生水平不断提高的结果,一直到医疗保健提供者使用最先进的技术。尽管取得了这些重大进展,尤其是在过去几十年的技术水平上,但全球医疗保健服务和医疗设施的整体可及性并没有平等分配。事实上,这些最先进的医疗保健服务和技术的最终受益者在日常生活中大多是大城市的居民,而农村地区的居民,即使在发达国家,也很难获得基本的医疗服务。这可能导致在及时获得医疗建议和援助方面存在巨大差距,在某些情况下甚至可能导致死亡。远程医疗被认为是促进所有人获得医疗服务的重要候选方案;因此,通过使用最先进的技术,同时提供高质量的诊断以及易于实施和使用。心电图分析和相关的心脏诊断技术是基本的医疗保健方法,通过临床医生的简单可视化和解释,或者通过自动检测潜在的心脏异常,快速洞察潜在的健康问题。在本文中,我们提出了一种基于时间卷积网络(TCN)的用于心电图分类的新型机器学习(ML)架构,用于五种心脏病。所提出的设计对输入的心跳信号实施了扩张因果一维卷积,在使用较少参数(10.2K)的情况下,其准确率达到 96.12%,F1 分数达到 84.13%,似乎优于所有现有的 ML 方法。这些结果使得所提出的 TCN 架构成为低功耗硬件平台的良好候选方案,因此它有可能用于远程健康监测的低成本嵌入式设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/207e/9920651/8a8ba3131a49/sensors-23-01697-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验