Suppr超能文献

经济学中的深度学习:系统与批判性综述

Deep learning in economics: a systematic and critical review.

作者信息

Zheng Yuanhang, Xu Zeshui, Xiao Anran

机构信息

College of Computer Science, Sichuan University, 610064 Chengdu, PR China.

Business School, Sichuan University, 610064 Chengdu, PR China.

出版信息

Artif Intell Rev. 2023 Feb 4:1-43. doi: 10.1007/s10462-022-10272-8.

Abstract

From the perspective of historical review, the methodology of economics develops from qualitative to quantitative, from a small sampling of data to a vast amount of data. Because of the superiority in learning inherent law and representative level, deep learning models assist in realizing intelligent decision-making in economics. After presenting some statistical results of relevant researches, this paper systematically investigates deep learning in economics, including a survey of frequently-used deep learning models in economics, several applications of deep learning models used in economics. Then, some critical reviews of deep learning in economics are provided, including models and applications, why and how to implement deep learning in economics, research gap and future challenges, respectively. It is obvious that several deep learning models and their variants have been widely applied in different subfields of economics, e.g., financial economics, macroeconomics and monetary economics, agricultural and natural resource economics, industrial organization, urban, rural, regional, real estate and transportation economics, health, education and welfare, business administration and microeconomics, etc. We are very confident that decision-making in economics will be more intelligent with the development of deep learning, because the research of deep learning in economics has become a hot and important topic recently.

摘要

从历史回顾的角度来看,经济学的方法论从定性发展到定量,从少量数据抽样发展到大量数据。由于深度学习模型在学习内在规律和代表性水平方面具有优势,有助于实现经济学中的智能决策。在展示了相关研究的一些统计结果之后,本文系统地研究了经济学中的深度学习,包括对经济学中常用深度学习模型的综述、深度学习模型在经济学中的若干应用。然后,分别对经济学中的深度学习进行了一些批判性评论,包括模型与应用、为何以及如何在经济学中实施深度学习、研究差距和未来挑战。显然,几种深度学习模型及其变体已在经济学的不同子领域中广泛应用,例如金融经济学、宏观经济学和货币经济学、农业和自然资源经济学、产业组织、城市、农村、区域、房地产和运输经济学、健康、教育和福利、工商管理和微观经济学等。我们非常有信心,随着深度学习的发展,经济学中的决策将更加智能,因为深度学习在经济学中的研究最近已成为一个热门且重要的话题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/023e/9898707/a35365caaee9/10462_2022_10272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验