Suppr超能文献

基于 bulk 和单细胞 RNA-seq 的结直肠癌中与缺氧相关的基因预后特征的鉴定。

Identification of a hypoxia-related gene prognostic signature in colorectal cancer based on bulk and single-cell RNA-seq.

机构信息

Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.

State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

出版信息

Sci Rep. 2023 Feb 13;13(1):2503. doi: 10.1038/s41598-023-29718-2.

Abstract

Colorectal cancer (CRC) is the most common and fatal tumor in the gastrointestinal system. Its incidence and mortality rate have increased in recent years. Hypoxia, a persistent physiological tumor feature, plays a vital role in CRC tumorigenesis, metastasis, and tumor microenvironment (TME). Therefore, we constructed a hypoxia-related gene (HRG) nomogram to predict overall survival (OS) and explored the role of HRGs in the CRC TME. The Cancer Genome Atlas (TCGA) dataset was used as the training set, and two Gene Expression Omnibus datasets (GSE39582 and GSE103479) were used as the testing sets. HRGs were identified using the Gene Set Enrichment Analysis (GSEA) database. An HRG prognostic model was constructed in the training set using the least absolute shrinkage and selection operator regression algorithm and validated in the testing sets. Then, we analyzed tumor-infiltrating cells (TICs) using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Furthermore, single-cell next-generation RNA sequencing (RNA-seq) was used to investigate HRG expression in different TICs in the GSE139555 dataset. Finally, reverse transcription polymerase chain reactions (RT-PCR) were used to validate HRG mRNA expression in ten pairs of CRC normal and cancer tissue samples. A six HRG prognostic signature was constructed, with a superior OS prediction ability in CRC patients (area under the receiver operating characteristic curve (AUC) at one year: 0.693, AUC at three years: 0.712, and AUC at five years: 0.780). GSEA enrichment analysis identified six pathways enriched in the high-risk group. The TIC analysis indicated that the high-risk group had lower T-cell expression and higher neutrophil expression than the low-risk group. Furthermore, immune-related genes had an inseparable relationship with the HRG prognostic signature. Based on single-cell RNA-seq data, we found elevated hexokinase 1 (HK1) and glucose-6-phosphate isomerase (GPI) gene expression in natural killer (NK) and CD8 T cells. RT-PCR in ten CRC normal-tumor tissue pairs showed that expression of the signature's six HRGs varied differently in cancerous and paracancerous tissues. The constructed HRG signature successfully predicted the OS of whole-stage CRC patients. In addition, we showed that the signature's six HRGs were closely associated with the TME in CRC, where hypoxia inhibits the antitumor function of T cells.

摘要

结直肠癌(CRC)是胃肠道系统中最常见和最致命的肿瘤。近年来,其发病率和死亡率呈上升趋势。缺氧是一种持续的生理肿瘤特征,在 CRC 肿瘤发生、转移和肿瘤微环境(TME)中起着至关重要的作用。因此,我们构建了一个与缺氧相关的基因(HRG)列线图来预测总生存期(OS),并探讨了 HRGs 在 CRC TME 中的作用。使用癌症基因组图谱(TCGA)数据集作为训练集,使用两个基因表达综合数据集(GSE39582 和 GSE103479)作为测试集。使用基因集富集分析(GSEA)数据库识别 HRGs。使用最小绝对收缩和选择算子回归算法(least absolute shrinkage and selection operator regression algorithm)在训练集中构建 HRG 预后模型,并在测试集中进行验证。然后,我们使用细胞类型识别的估计相对 RNA 转录物子集(CIBERSORT)算法分析肿瘤浸润细胞(TICs)。此外,使用单细胞下一代 RNA 测序(RNA-seq)在 GSE139555 数据集中研究不同 TIC 中的 HRG 表达。最后,使用逆转录聚合酶链反应(RT-PCR)在 10 对 CRC 正常和癌症组织样本中验证 HRG mRNA 表达。构建了一个包含六个 HRG 的预后特征,对 CRC 患者的 OS 具有较好的预测能力(一年的 AUC:0.693,三年的 AUC:0.712,五年的 AUC:0.780)。GSEA 富集分析鉴定了在高危组中富集的六个途径。TIC 分析表明,与低危组相比,高危组的 T 细胞表达较低,中性粒细胞表达较高。此外,免疫相关基因与 HRG 预后特征密切相关。基于单细胞 RNA-seq 数据,我们发现自然杀伤(NK)和 CD8 T 细胞中的己糖激酶 1(HK1)和葡萄糖-6-磷酸异构酶(GPI)基因表达升高。在 10 对 CRC 正常-肿瘤组织对中进行的 RT-PCR 显示,特征的六个 HRGs 在癌组织和癌旁组织中的表达存在差异。构建的 HRG 特征成功预测了全阶段 CRC 患者的 OS。此外,我们表明,该特征的六个 HRGs 与 CRC 的 TME 密切相关,其中缺氧抑制了 T 细胞的抗肿瘤功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84e1/9925779/291cd507600f/41598_2023_29718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验