Suppr超能文献

在衰老过程中,/酸性鞘磷脂酶和/神经酰胺合酶突变的脂质组显示出不同的脂质谱。

The lipidomes of with mutations in /acid sphingomyelinase and /ceramide synthase show distinct lipid profiles during aging.

机构信息

Department of Biology, Marian University, Indianapolis, IN 46222, USA.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

Aging (Albany NY). 2023 Feb 13;15(3):650-674. doi: 10.18632/aging.204515.

Abstract

Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model , we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (), which breaks down sphingomyelin to ceramide, and ceramide synthase (), which synthesizes ceramide from sphingosine. Worm and mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the /FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day mutants have fewer TAGs. Intriguingly, mutants have a similar lipid composition as the long-lived, caloric restriction model /mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in .

摘要

脂质代谢影响细胞和生理功能,从而调节动物的健康寿命和寿命。模式生物中的脂质组学方法使我们能够更好地了解与年龄和寿命相关的脂质组成变化。在这里,我们使用该模型研究了缺乏鞘脂代谢关键酶的突变体的脂质组;具体来说,我们研究了分解鞘磷脂生成神经酰胺的酸性神经鞘磷脂酶(),以及从神经酰胺合成神经酰胺的神经酰胺合酶()。先前发现和突变体分别具有长寿命和短寿命。我们分析了 1 天、5 天和 10 天龄的野生型动物与突变体之间的纵向脂质变化。我们在几个脂质类别中检测到了 700 多种不同的脂质。结果表明,与 1 天龄相比,10 天龄的野生型动物表现出三酰基甘油(TAG)增加,而溶血磷脂酰胆碱(LPC)减少。我们发现,与 10 天龄野生型动物相比,10 天龄的突变体具有更高的总多不饱和脂肪酸(PUFA)和更多的 LPC。这些变化反映了另一种短寿命模型,即胰岛素样信号通路下游的 /FOXO 转录因子。此外,我们发现突变体的氧化应激反应较差,这支持了突变体中升高的 PUFAs 可能积累更多氧化损伤的模型。另一方面,10 天龄的突变体具有较少的 TAG。有趣的是,10 天龄的突变体具有与长寿、热量限制模型 /mAChR 突变体相似的脂质组成。总之,这些分析强调了脂质组学分析在描述衰老过程中代谢变化的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a40/9970312/8b49c021f613/aging-15-204515-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验