Suppr超能文献

数字图像分析 Ki67 异质性提高胃肠胰神经内分泌肿瘤的诊断和预后

Digital Image Analysis of Ki67 Heterogeneity Improves the Diagnosis and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms.

机构信息

Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Pathology, Fudan University, Shanghai, China.

Wonders Information Co. LTD, Shanghai, China.

出版信息

Mod Pathol. 2023 Jan;36(1):100017. doi: 10.1016/j.modpat.2022.100017.

Abstract

Ki67 is a reliable grading and prognostic biomarker of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). The intratumor heterogeneity of Ki67, correlated with tumor progression, is a valuable factor that requires image analysis. The application of digital image analysis (DIA) enables new approaches for the assessment of Ki67 heterogeneity distribution. We investigated the diagnostic utility of Ki67 heterogeneity parameters in the classification and grading of GEP-NENs and explored their clinical values with regard to their prognostic relevance. The DIA algorithm was performed on whole-slide images of 102 resection samples with Ki67 staining. Good agreement was observed between the manual and DIA methods in the hotspot evaluation (R = 0.94, P < .01). Using the grid-based region of interest approach, score-based heat maps provided a distinctive overview of the intratumoral distribution of Ki67 between neuroendocrine carcinomas and neuroendocrine tumors. The computation of heterogeneity parameters related to DIA-determined Ki67 showed that the coefficient of variation and Morisita-Horn index were directly related to the classification and grading of GEP-NENs and provided insights into distinguishing high-grade neuroendocrine neoplasms (grade 3 neuroendocrine tumor vs neuroendocrine carcinoma, P < .01). Our study showed that a high Morisita-Horn index correlated with poor disease-free survival (multivariate analysis: hazard ratio, 56.69), which was found to be the only independent predictor of disease-free survival in patients with GEP-NEN. These spatial biomarkers have an impact on the classification and grading of tumors and highlight the prognostic associations of tumor heterogeneity. Digitization of Ki67 variations provides a direct and objective measurement of tumor heterogeneity and better predicts the biological behavior of GEP-NENs.

摘要

Ki67 是胃肠胰神经内分泌肿瘤(GEP-NENs)可靠的分级和预后生物标志物。Ki67 的肿瘤内异质性与肿瘤进展相关,是需要图像分析的有价值因素。数字图像分析(DIA)的应用为评估 Ki67 异质性分布提供了新方法。我们研究了 Ki67 异质性参数在 GEP-NEN 分类和分级中的诊断效用,并探讨了它们在预后相关性方面的临床价值。对 102 例 Ki67 染色的切除标本的全切片图像进行了 DIA 算法分析。在热点评估中,手动方法和 DIA 方法之间观察到良好的一致性(R=0.94,P<.01)。使用基于网格的感兴趣区域方法,基于评分的热点图提供了 Ki67 在神经内分泌癌和神经内分泌肿瘤之间肿瘤内分布的独特概述。与 DIA 确定的 Ki67 相关的异质性参数的计算表明,变异系数和 Morisita-Horn 指数与 GEP-NEN 的分类和分级直接相关,并深入了解了鉴别高级别神经内分泌肿瘤(3 级神经内分泌肿瘤与神经内分泌癌,P<.01)的能力。我们的研究表明,高 Morisita-Horn 指数与无病生存期不良相关(多变量分析:危险比,56.69),这是 GEP-NEN 患者无病生存期的唯一独立预测因子。这些空间生物标志物对肿瘤的分类和分级有影响,并突出了肿瘤异质性的预后相关性。Ki67 变化的数字化提供了肿瘤异质性的直接和客观测量,并更好地预测了 GEP-NEN 的生物学行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验