Suppr超能文献

儿童新发病例婴儿痉挛症的住院再入院率。

Hospital readmissions in children with new-onset infantile epileptic spasms syndrome.

机构信息

Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Epilepsia Open. 2023 Jun;8(2):444-455. doi: 10.1002/epi4.12711. Epub 2023 Mar 30.

Abstract

OBJECTIVE

To describe inpatient resource use in the 2 years following infantile epileptic spasms syndrome (IESS) diagnosis, examine the association between clinical/demographic variables and incidence of readmission, and identify risk factors/reasons for frequent readmissions.

METHODS

Retrospective cohort analysis of readmissions (scheduled/unscheduled) within the first 2 years following IESS diagnosis, details of readmissions (number/time between rehospitalizations, and length of stay), demographic/clinical variables, and reasons for readmissions were collected. Negative binomial regression analysis evaluated associations between incidence of readmissions (both scheduled/unscheduled and unscheduled alone) and demographic/clinical factors. Logistic regression assessed the risk of having recurrent readmissions (≥5 readmissions).

RESULTS

Among 93 (60% males) new-onset IESS patients, there were 394 readmissions (56% scheduled and 44% unscheduled) within 2-years following IESS diagnosis. Mean length of stay was 3.5 days (SD: 5.9). Readmissions occurred in 82 patients (88%) and 37 (40%) experienced ≥5 readmissions. On multivariate regression analysis, readmissions were increased with use of multiple first-line treatments for IESS (P = 0.006), technology assistance (P ≤ 0.001), and multispecialty care (P = 0.01); seizure freedom (P = 0.015) and known etiology (P = 0.011) lowered the incidence of readmissions. Examining unscheduled readmissions separately, increased readmissions occurred with public insurance (P = 0.013), technology use (P ≤ 0.0.001), and multispecialty care (P = 0.013); seizure freedom decreased unscheduled readmissions (P = 0.006). Technology assistance (G-tube, NG tube, VP shunt, and tracheostomy use) increased the odds (P = 0.007) for recurrent readmissions. Reasons for readmissions included EEG monitoring (protocol driven for verification of IESS remission/characterization of events/EEG surveillance/presurgical monitoring) (51%), acute medical issues (21%), and seizure exacerbation (15%). Protocol-driven readmissions declined an estimated 52% following protocol modification during the study.

SIGNIFICANCE

In the 2 years following IESS diagnosis, there is substantial inpatient resource use with nearly 40% experiencing ≥5 readmissions (mostly epilepsy related). Since readmissions are increased by intrinsic patient characteristics such as medical complexity (technology use and multispecialty care) or epilepsy-related issues, the preventability of readmissions is uncertain, except for protocol-driven ones.

摘要

目的

描述婴儿痉挛症综合征(IESS)诊断后 2 年内住院资源的使用情况,研究临床/人口统计学变量与再入院发生率之间的关系,并确定频繁再入院的危险因素/原因。

方法

对 IESS 诊断后 2 年内首次住院的再入院(计划性/非计划性)进行回顾性队列分析,收集再入院的详细信息(再入院次数/时间间隔和住院时间)、人口统计学/临床变量以及再入院的原因。采用负二项回归分析评估再入院发生率(计划性/非计划性和非计划性)与人口统计学/临床因素之间的关系。采用逻辑回归评估复发性再入院(≥5 次再入院)的风险。

结果

在 93 例(60%为男性)新诊断为 IESS 的患者中,在 IESS 诊断后 2 年内共发生 394 次再入院(56%为计划性,44%为非计划性)。平均住院时间为 3.5 天(标准差:5.9)。82 例患者(88%)发生再入院,37 例(40%)患者发生≥5 次再入院。多变量回归分析显示,IESS 一线治疗方案较多(P=0.006)、使用技术辅助(P≤0.001)和多专科治疗(P=0.01)会增加再入院的风险;无癫痫发作(P=0.015)和明确病因(P=0.011)可降低再入院发生率。单独分析非计划性再入院时,发现公共保险(P=0.013)、技术使用(P≤0.001)和多专科治疗(P=0.013)会增加再入院的风险;无癫痫发作会降低非计划性再入院的风险(P=0.006)。技术辅助(胃管、鼻饲管、脑室-腹腔分流术和气管切开术的使用)会增加复发性再入院的风险(P=0.007)。再入院的原因包括脑电图监测(为了确认 IESS 缓解/癫痫发作事件的特征/脑电图监测/术前监测)(51%)、急性医疗问题(21%)和癫痫发作恶化(15%)。在研究期间修改方案后,估计有 52%的因协议驱动的再入院减少。

意义

在 IESS 诊断后 2 年内,住院资源的使用量很大,近 40%的患者发生≥5 次再入院(主要与癫痫相关)。由于再入院与患者的固有特征有关,如医疗复杂性(技术使用和多专科治疗)或与癫痫相关的问题,除了协议驱动的再入院外,再入院的可预防程度尚不确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验