Suppr超能文献

基于深度学习的定量分析的局部化疗栓塞的三维肿瘤模拟体外药物释放模型。

A 3D Tumor-Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learning-Based Quantitative Analyses.

机构信息

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.

Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Apr;10(11):e2206195. doi: 10.1002/advs.202206195. Epub 2023 Feb 15.

Abstract

Primary liver cancer, with the predominant form as hepatocellular carcinoma (HCC), remains a worldwide health problem due to its aggressive and lethal nature. Transarterial chemoembolization, the first-line treatment option of unresectable HCC that employs drug-loaded embolic agents to occlude tumor-feeding arteries and concomitantly delivers chemotherapeutic drugs into the tumor, is still under fierce debate in terms of the treatment parameters. The models that can produce in-depth knowledge of the overall intratumoral drug release behavior are lacking. This study engineers a 3D tumor-mimicking drug release model, which successfully overcomes the substantial limitations of conventional in vitro models through utilizing decellularized liver organ as a drug-testing platform that uniquely incorporates three key features, i.e., complex vasculature systems, drug-diffusible electronegative extracellular matrix, and controlled drug depletion. This drug release model combining with deep learning-based computational analyses for the first time permits quantitative evaluation of all important parameters associated with locoregional drug release, including endovascular embolization distribution, intravascular drug retention, and extravascular drug diffusion, and establishes long-term in vitro-in vivo correlations with in-human results up to 80 d. This model offers a versatile platform incorporating both tumor-specific drug diffusion and elimination settings for quantitative evaluation of spatiotemporal drug release kinetics within solid tumors.

摘要

原发性肝癌,主要形式为肝细胞癌(HCC),由于其侵袭性和致命性,仍然是一个全球性的健康问题。经动脉化疗栓塞术是不可切除 HCC 的一线治疗选择,它使用载药栓塞剂阻塞肿瘤供养动脉,并同时将化疗药物输送到肿瘤中,但在治疗参数方面仍存在激烈的争论。目前缺乏能够深入了解肿瘤内整体药物释放行为的模型。本研究设计了一种 3D 肿瘤模拟药物释放模型,该模型通过利用去细胞化的肝脏作为药物测试平台,成功克服了传统体外模型的重大局限性,该平台独特地包含三个关键特征,即复杂的脉管系统、可扩散药物的电负性细胞外基质和可控的药物耗竭。这种结合基于深度学习的计算分析的药物释放模型,首次允许对与局部区域药物释放相关的所有重要参数进行定量评估,包括血管内栓塞剂分布、血管内药物滞留和血管外药物扩散,并建立了长达 80 天的体外-体内长期相关性,与人体结果相吻合。该模型提供了一个多功能平台,包含肿瘤特异性药物扩散和消除设置,用于定量评估实体瘤内药物时空释放动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e04e/10104640/5d9b1c4dedc7/ADVS-10-2206195-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验