Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China.
Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127, West Youyi Road, Xi'an, Shaanxi 710072, China.
Int J Pharm. 2023 Mar 25;635:122728. doi: 10.1016/j.ijpharm.2023.122728. Epub 2023 Feb 14.
Antitumor immunotherapy has become a powerful therapeutic modality to identify and kill various malignant tumors by harnessing the immune system. However, it is hampered by the immunosuppressive microenvironment and poor immunogenicity in malignant tumors. Herein, in order to achieve multi-loading of drugs with different pharmacokinetic properties and targets, a charge reversal yolk-shell liposome co-loaded with JQ1 and doxorubicin (DOX) into the poly (D,L-lactic-co-glycolic acid) (PLGA) yolk and the lumen of the liposome respectively was engineered to increase hydrophobic drug loading capacity and stability under physiological conditions and further enhance tumor chemotherapy via blockade programmed death ligand 1 (PD-L1) pathway. This nanoplatform could release less JQ1 compared to traditional liposomes to avoid drug leakage under physiological conditions due to the protection of liposomes on JQ1 loaded PLGA nanoparticles while the release of JQ1 increased in an acidic environment. In the tumor microenvironment, released DOX promoted immunogenic cell death (ICD), and JQ1 blocked the PD-L1 pathway to strengthen chemo-immunotherapy. The in vivo antitumor results demonstrated the collaborative treatment of DOX and JQ1 in B16-F10 tumor-bearing mice models with minimized systemic toxicity. Furthermore, the orchestrated yolk-shell nanoparticle system could enhance the ICD effect, caspase 3 activation, and cytotoxic T lymphocyte infiltration while inhibiting PD-L1 expression, provoking a strong antitumor effect, whereas yolk-shell liposomes encapsulating only JQ1 or DOX showed modest tumor therapeutic effects. Hence, the cooperative yolk-shell liposome strategy provides a potential candidate for enhancement of hydrophobic drug loading and stability, showing potential for clinic application and synergistic cancer chemo-immunotherapy.
抗肿瘤免疫疗法已成为一种强大的治疗方式,通过利用免疫系统来识别和杀死各种恶性肿瘤。然而,它受到肿瘤中免疫抑制微环境和低免疫原性的限制。在此,为了实现具有不同药代动力学性质和靶标的多药物负载,设计了一种载有多柔比星(DOX)和 JQ1 的荷正电核壳型脂质体,分别将 JQ1 和 DOX 共包载到聚(D,L-乳酸-共-乙醇酸)(PLGA)核和脂质体的腔室中,以提高在生理条件下的疏水性药物载量和稳定性,并通过阻断程序性死亡配体 1(PD-L1)通路进一步增强肿瘤化疗效果。由于脂质体对载有 JQ1 的 PLGA 纳米颗粒的保护,该纳米平台在生理条件下释放的 JQ1 少于传统脂质体,以避免药物泄漏,而在酸性环境中 JQ1 的释放增加。在肿瘤微环境中,释放的 DOX 促进免疫原性细胞死亡(ICD),JQ1 阻断 PD-L1 通路以增强化疗免疫治疗。在 B16-F10 荷瘤小鼠模型中的体内抗肿瘤结果表明,JQ1 和 DOX 的协同治疗以最小的全身毒性。此外,协调的核壳纳米颗粒系统可以增强 ICD 效应、半胱天冬酶 3 激活和细胞毒性 T 淋巴细胞浸润,同时抑制 PD-L1 表达,引发强烈的抗肿瘤作用,而仅包封 JQ1 或 DOX 的核壳脂质体显示出适度的肿瘤治疗效果。因此,协同核壳脂质体策略为提高疏水性药物载量和稳定性提供了一种潜在的候选方案,显示出在临床应用和协同癌症化疗免疫治疗方面的潜力。