Suppr超能文献

布朗蜂群大小的中等非典型波动的概率。

Probabilities of moderately atypical fluctuations of the size of a swarm of Brownian bees.

机构信息

Institute of Physics CAS, ELI Beamlines, 182 21 Prague, Czech Republic.

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Phys Rev E. 2023 Jan;107(1-1):014140. doi: 10.1103/PhysRevE.107.014140.

Abstract

The "Brownian bees" model describes an ensemble of N= const independent branching Brownian particles. The conservation of N is provided by a modified branching process. When a particle branches into two particles, the particle which is farthest from the origin is eliminated simultaneously. The spatial density of the particles is governed by the solution of a free boundary problem for a reaction-diffusion equation in the limit of N≫1. At long times, the particle density approaches a spherically symmetric steady-state solution with a compact support of radius ℓ[over ¯]{0}. However, at finite N, the radius of this support, L, fluctuates. The variance of these fluctuations appears to exhibit a logarithmic anomaly [Siboni et al., Phys. Rev. E 104, 054131 (2021)2470-004510.1103/PhysRevE.104.054131]. It is proportional to N^{-1}lnN at N→∞. We investigate here the tails of the probability density function (PDF), P(L), of the swarm radius, when the absolute value of the radius fluctuation ΔL=L-ℓ[over ¯]{0} is sufficiently larger than the typical fluctuations' scale determined by the variance. For negative deviations the PDF can be obtained in the framework of the optimal fluctuation method. This part of the PDF displays the scaling behavior lnP∝-NΔL^{2}ln^{-1}(ΔL^{-2}), demonstrating a logarithmic anomaly at small negative ΔL. For the opposite sign of the fluctuation, ΔL>0, the PDF can be obtained with an approximation of a single particle, running away. We find that lnP∝-N^{1/2}ΔL. We consider in this paper only the case when |ΔL| is much less than the typical radius of the swarm at N≫1.

摘要

“布朗蜂”模型描述了一个由 N=const 个独立分支布朗粒子组成的集合。N 的守恒由一个修正的分支过程提供。当一个粒子分支成两个粒子时,同时会消除离原点最远的粒子。粒子的空间密度由在 N≫1 的极限下反应-扩散方程的自由边界问题的解来控制。在长时间内,粒子密度接近具有有限支撑半径 ℓ[over ¯]{0}的球对称稳态解。然而,在有限的 N 时,这个支撑半径 L 会发生波动。这些波动的方差似乎表现出对数反常[Siboni 等人,Phys. Rev. E 104, 054131 (2021)2470-004510.1103/PhysRevE.104.054131]。当 N→∞时,它与 N^{-1}lnN 成正比。我们在这里研究当半径波动的绝对值 ΔL=L-ℓ[over ¯]{0}足够大于由方差确定的典型波动尺度时,群半径的概率密度函数(PDF)P(L)的尾部。对于负偏差,可以在最优波动方法的框架内得到 PDF。这部分 PDF 显示了 lnP∝-NΔL^{2}ln^{-1}(ΔL^{-2})的标度行为,在小的负 ΔL 处表现出对数反常。对于波动的相反符号,ΔL>0,PDF 可以通过单个粒子的近似求解来获得,即逃逸。我们发现 lnP∝-N^{1/2}ΔL。在本文中,我们仅考虑当 |ΔL|在 N≫1 时远小于群的典型半径的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验