Suppr超能文献

GENECI:一种基于共识的新型进化机器学习方法,用于推断基因调控网络。

GENECI: A novel evolutionary machine learning consensus-based approach for the inference of gene regulatory networks.

机构信息

Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain.

Dept. de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain; Biomedical Research Institute of Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.

出版信息

Comput Biol Med. 2023 Mar;155:106653. doi: 10.1016/j.compbiomed.2023.106653. Epub 2023 Feb 14.

Abstract

Gene regulatory networks define the interactions between DNA products and other substances in cells. Increasing knowledge of these networks improves the level of detail with which the processes that trigger different diseases are described and fosters the development of new therapeutic targets. These networks are usually represented by graphs, and the primary sources for their correct construction are usually time series from differential expression data. The inference of networks from this data type has been approached differently in the literature. Mostly, computational learning techniques have been implemented, which have finally shown some specialization in specific datasets. For this reason, the need arises to create new and more robust strategies for reaching a consensus based on previous results to gain a particular capacity for generalization. This paper presents GENECI (GEne NEtwork Consensus Inference), an evolutionary machine learning approach that acts as an organizer for constructing ensembles to process the results of the main inference techniques reported in the literature and to optimize the consensus network derived from them, according to their confidence levels and topological characteristics. After its design, the proposal was confronted with datasets collected from academic benchmarks (DREAM challenges and IRMA network) to quantify its accuracy. Subsequently, it was applied to a real-world biological network of melanoma patients whose results could be contrasted with medical research collected in the literature. Finally, it has been proved that its ability to optimize the consensus of several networks leads to outstanding robustness and accuracy, gaining a certain generalization capacity after facing the inference of multiple datasets. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a python package available at PyPI: https://pypi.org/project/geneci/.

摘要

基因调控网络定义了 DNA 产物与细胞内其他物质之间的相互作用。对这些网络的认识不断提高,可详细描述引发不同疾病的过程,并促进新治疗靶点的开发。这些网络通常用图形表示,构建这些网络的主要原始数据通常是来自差异表达数据的时间序列。在文献中,从这种数据类型推断网络的方法有很大的不同。大多数情况下,都实施了计算学习技术,这些技术最终在特定数据集上表现出了一些专业化。因此,需要创建新的、更稳健的策略,基于以前的结果达成共识,以获得特定的泛化能力。本文提出了 GENECI(基因网络共识推断),这是一种进化机器学习方法,它可以作为组织者来构建集成,以处理文献中主要推断技术报告的结果,并根据置信度水平和拓扑特征优化由此衍生的共识网络。在设计之后,该提案通过来自学术基准(DREAM 挑战和 IRMA 网络)的数据集进行了准确性的量化。随后,它被应用于黑素瘤患者的真实生物网络,其结果可以与文献中收集的医学研究进行对比。最后,事实证明,其优化多个网络共识的能力可实现出色的鲁棒性和准确性,在面对多个数据集的推断后,具有一定的泛化能力。源代码托管在 GitHub 上的一个公共存储库中,许可证为 MIT:https://github.com/AdrianSeguraOrtiz/GENECI。此外,为了方便其安装和使用,与该实现相关的软件已被封装在一个可在 PyPI 上获得的 python 包中:https://pypi.org/project/geneci/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验