Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain.
Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain.
J Neuroeng Rehabil. 2023 Feb 19;20(1):23. doi: 10.1186/s12984-023-01144-5.
In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes.
Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy.
(1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke.
Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
在过去的十年中,下肢外骨骼与脑损伤患者相互作用的机器人控制器的开发取得了实质性进展。然而,哪种外骨骼控制策略能更有效地刺激运动功能恢复仍是一个悬而未决的问题。在本综述中,我们旨在通过以下方式补充关于步态康复外骨骼控制的主题的先前文献调查:(1)提供当前控制策略的更新结构化框架,(2)分析机器人干预中使用的临床验证方法,(3)报告控制策略与临床结果之间的潜在关系。
从 2000 年 1 月到 2020 年 9 月,使用数据库特定的搜索词在四个数据库中进行了搜索。我们确定了 1648 篇文章,其中 159 篇进行了全文评估。我们纳入了临床评估外骨骼对受损参与者有效性的研究,并明确解释或引用了实施的控制策略。
(1)我们发现,基于地面反作用力阈值(63%)的规则算法(72%)的辅助控制(100%的外骨骼)与轨迹跟踪控制(97%)相结合是最常用的控制策略。只有 14%的外骨骼采用了自适应控制策略。(2)关于机器人干预中使用的临床验证,我们发现所选的实验方案和结果指标存在高度差异。(3)有较高证据等级和中等数量参与者(N=19)的研究表明,轨迹跟踪和顺应性控制相结合的辅助控制策略对急性中风具有最高的临床效果。然而,它们也需要最长的训练时间。有较高证据等级和低数量参与者(N=8)的研究表明,基于肌电图作为步态检测指标和控制信号的基于阈值算法的辅助控制策略对亚急性中风提供了最高的改善,同时训练强度最低。最后,有较高证据等级和中等数量参与者(N=19)的研究表明,与轨迹跟踪控制相结合的自适应振荡器算法的辅助控制策略对慢性中风患者的改善效果最高,同时训练强度降低。
尽管为外骨骼步态神经康复开发了新的、更有效的控制器,但不同控制策略对临床结果的有效性的现有证据水平仍然较低。实验方案缺乏标准化,导致高度异质性。对控制策略进行标准化比较,分析控制参数与生物力学指标之间的关系,将填补这一空白,从而更好地指导未来的技术发展。基于与患者特定病理相关的关键生物力学描述符在线调整控制参数的控制器是否优于当前的控制策略,这仍是一个悬而未决的问题。