Suppr超能文献

了解新冠疫情期间数字接触者追踪的影响。

Understanding the impact of digital contact tracing during the COVID-19 pandemic.

作者信息

Burdinski Angelique, Brockmann Dirk, Maier Benjamin Frank

机构信息

Institute for Theoretical Biology and Integrated Research Institute for the Life-Sciences, Humboldt University of Berlin, Germany.

出版信息

PLOS Digit Health. 2022 Dec 6;1(12):e0000149. doi: 10.1371/journal.pdig.0000149. eCollection 2022 Dec.

Abstract

Digital contact tracing (DCT) applications have been introduced in many countries to aid the containment of COVID-19 outbreaks. Initially, enthusiasm was high regarding their implementation as a non-pharmaceutical intervention (NPI). However, no country was able to prevent larger outbreaks without falling back to harsher NPIs. Here, we discuss results of a stochastic infectious-disease model that provide insights in how the progression of an outbreak and key parameters such as detection probability, app participation and its distribution, as well as engagement of users impact DCT efficacy informed by results of empirical studies. We further show how contact heterogeneity and local contact clustering impact the intervention's efficacy. We conclude that DCT apps might have prevented cases on the order of single-digit percentages during single outbreaks for empirically plausible ranges of parameters, ignoring that a substantial part of these contacts would have been identified by manual contact tracing. This result is generally robust against changes in network topology with exceptions for homogeneous-degree, locally-clustered contact networks, on which the intervention prevents more infections. An improvement of efficacy is similarly observed when app participation is highly clustered. We find that DCT typically averts more cases during the super-critical phase of an epidemic when case counts are rising and the measured efficacy therefore depends on the time of evaluation.

摘要

许多国家已引入数字接触者追踪(DCT)应用程序,以帮助控制新冠疫情。最初,人们对将其作为一种非药物干预措施(NPI)实施的热情很高。然而,没有一个国家能够在不诉诸更严格的非药物干预措施的情况下防止大规模疫情爆发。在此,我们讨论一个随机传染病模型的结果,这些结果为疫情的发展以及诸如检测概率、应用程序参与度及其分布以及用户参与度等关键参数如何影响DCT效果提供了见解,这些见解是基于实证研究结果得出的。我们进一步展示了接触异质性和局部接触聚集如何影响干预措施的效果。我们得出结论,对于参数的经验上合理的范围,DCT应用程序在单次疫情爆发期间可能预防了个位数百分比数量的病例,不过忽略了这些接触中的很大一部分本来会通过人工接触者追踪被识别出来。这一结果通常对网络拓扑结构的变化具有鲁棒性,但同度、局部聚集的接触网络除外,在这种网络上该干预措施能预防更多感染。当应用程序参与度高度聚集时,也会类似地观察到效果的改善。我们发现,在疫情的超临界阶段,即病例数上升时,DCT通常能避免更多病例,因此测得的效果取决于评估时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae0b/9931320/405693410d84/pdig.0000149.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验