Suppr超能文献

基于临床驱动的多标签医学图像分类的三重注意和双池对比学习。

Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification.

机构信息

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; Institute of Medical Intelligence and XR, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Med Image Anal. 2023 May;86:102772. doi: 10.1016/j.media.2023.102772. Epub 2023 Feb 16.

Abstract

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.

摘要

多标签分类(MLC)可以为单个图像分配多个标签,并在医学图像上取得了有前景的结果。但现有的 MLC 方法在实际应用中仍然面临着挑战性的临床现实,例如:(1)分类错误带来的医疗风险,(2)不同疾病之间的样本不平衡问题,(3)无法对未预定义的疾病(未见疾病)进行分类。在这里,我们设计了一种混合标签来提高 MLC 方法的灵活性,并缓解样本不平衡问题。具体来说,在有标签的训练集中,我们为具有足够样本的高频疾病保留独立标签,并使用混合标签将低频疾病与较少的样本合并。混合标签也可用于将未见疾病投入实际应用。在本文中,我们提出了基于上述标签表示的用于多标签医学图像分类的三重注意和双池对比学习(TA-DCL)。TA-DCL 架构是一种三重注意网络(TAN),它通过从医学图像中挖掘有效信息,将类别注意力、自注意力和交叉注意力结合在一起,为所有疾病标签学习高质量的标签嵌入。DCL 包括双池对比训练(DCT)和双池对比推理(DCI)。DCT 优化了属于不同疾病标签的标签嵌入的聚类中心,以提高标签嵌入的辨别能力。DCI 通过对比差异来缓解患病病例的错误分类,以减少临床风险并提高检测未见疾病的能力。TA-DCL 在两个公共医学图像数据集 ODIR 和 NIH-ChestXray14 上进行了验证,表现优于其他最先进的 MLC 方法。代码可在 https://github.com/ZhangYH0502/TA-DCL 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验