Opt Express. 2023 Feb 13;31(4):6314-6326. doi: 10.1364/OE.477368.
The scattering of light by resonant nanoparticles is a key process for enhancing the solar reflectance in daylight radiative cooling. Here, we investigate the impact of material dispersion on the scattering performance of popular nanoparticles for radiative cooling applications. We show that, due to material dispersion, nanoparticles with a qualitatively similar response at visible frequencies exhibit fundamentally different scattering properties at infrared frequencies. It is found that dispersive nanoparticles exhibit suppressed-scattering windows, allowing for selective thermal emission within a highly reflective sample. The existence of suppressed-scattering windows solely depends on material dispersion, and they appear pinned to the same wavelength even in random composite materials and periodic metasurfaces. Finally, we investigate calcium-silicate-hydrate (CSH), the main phase of concrete, as an example of a dispersive host, illustrating that the co-design of nanoparticles and host allows for tuning of the suppressed-scattering windows. Our results indicate that controlled nanoporosities would enable concrete with daylight passive radiative cooling capabilities.
光在共振纳米粒子上的散射是增强日光辐射冷却中太阳反射率的关键过程。在这里,我们研究了材料色散对用于辐射冷却应用的流行纳米粒子散射性能的影响。我们表明,由于材料色散,在可见光频率下具有定性相似响应的纳米粒子在红外频率下表现出根本不同的散射特性。结果发现,色散纳米粒子表现出抑制散射窗口,允许在高反射样品内进行选择性热发射。抑制散射窗口的存在仅取决于材料色散,即使在随机复合材料和周期性超材料中,它们也会被固定在相同的波长上。最后,我们以水泥石(混凝土的主要成分)为例,研究了分散相,表明纳米粒子和分散相的共同设计可以调节抑制散射窗口。我们的结果表明,控制纳米多孔性可以使混凝土具有日光被动辐射冷却能力。