Chattopadhyay Tamoghna, Ozarkar Saket S, Buwa Ketaki, Thomopoulos Sophia I, Thompson Paul M
Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States.
bioRxiv. 2023 Feb 16:2023.02.15.528705. doi: 10.1101/2023.02.15.528705.
Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer's disease and practical tests could help identify patients who could respond to treatment, now that promising anti-amyloid drugs are available. Even so, Aβ positivity (Aβ+) is assessed using PET or CSF assays, both highly invasive procedures. Here, we investigate how well Aβ+ can be predicted from T1 weighted brain MRI and gray matter, white matter and cerebrospinal fluid segmentations from T1-weighted brain MRI (T1w), a less invasive alternative. We used 3D convolutional neural networks to predict Aβ+ based on 3D brain MRI data, from 762 elderly subjects (mean age: 75.1 yrs. ± 7.6SD; 394F/368M; 459 healthy controls, 67 with MCI and 236 with dementia) scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We also tested whether the accuracy increases when using transfer learning from the larger UK Biobank dataset. Overall, the 3D CNN predicted Aβ+ with 76% balanced accuracy from T1w scans. The closest performance to this was using white matter maps alone when the model was pre-trained on an age prediction in the UK Biobank. The performance of individual tissue maps was less than the T1w, but transfer learning helped increase the accuracy. Although tests on more diverse data are warranted, deep learned models from standard MRI show initial promise for Aβ+ estimation, before considering more invasive procedures.
大脑中异常的β-淀粉样蛋白(Aβ)积累是阿尔茨海默病的早期指标,鉴于目前有前景良好的抗淀粉样蛋白药物,实用的检测方法有助于识别可能对治疗有反应的患者。即便如此,Aβ阳性(Aβ+)是通过PET或脑脊液检测来评估的,这两种都是侵入性很强的程序。在此,我们研究从T1加权脑MRI以及T1加权脑MRI(T1w)的灰质、白质和脑脊液分割中预测Aβ+的效果如何,T1w是一种侵入性较小的替代方法。我们使用三维卷积神经网络,基于来自762名老年受试者(平均年龄:75.1岁±7.6标准差;394名女性/368名男性;459名健康对照、67名轻度认知障碍患者和236名痴呆患者)的三维脑MRI数据来预测Aβ+,这些数据是作为阿尔茨海默病神经影像倡议的一部分进行扫描的。我们还测试了使用来自更大的英国生物银行数据集的迁移学习时,准确率是否会提高。总体而言,三维卷积神经网络从T1w扫描中预测Aβ+的平衡准确率为76%。与之最接近的表现是,当模型在英国生物银行的年龄预测上进行预训练时,仅使用白质图谱。单个组织图谱的表现低于T1w,但迁移学习有助于提高准确率。尽管有必要在更多样化的数据上进行测试,但在考虑采用侵入性更强的程序之前,基于标准MRI的深度学习模型在Aβ+估计方面显示出初步的前景。