Suppr超能文献

原子级调控二维 ReSe:提升光催化的通用平台。

Atomic-Level Regulated 2D ReSe : A Universal Platform Boostin Photocatalysis.

机构信息

School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.

Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, 150080, China.

出版信息

Adv Mater. 2023 May;35(19):e2210164. doi: 10.1002/adma.202210164. Epub 2023 Mar 24.

Abstract

Solar hydrogen (H ) generation via photocatalytic water splitting is practically promising, environmentally benign, and sustainably carbon neutral. It is important therefore to understand how to controllably engineer photocatalysts at the atomic level. In this work, atomic-level engineering of defected ReSe nanosheets (NSs) is reported to significantly boost photocatalytic H evolution on various semiconductor photocatalysts including TiO , CdS, ZnIn S , and C N . Advanced characterizations, such as atomic-resolution aberration-corrected scanning transmission electron microscopy (AC-STEM), synchrotron-based X-ray absorption near edge structure (XANES), in situ X-ray photoelectron spectroscopy (XPS), transient-state surface photovoltage (SPV) spectroscopy, and transient-state photoluminescence (PL) spectroscopy, together with theoretical computations confirm that the strongly coupled ReSe /TiO interface and substantial atomic-level active sites of defected ReSe NSs result in the significantly raised activity of ReSe /TiO . This work not only for the first time realizes the atomic-level engineering of ReSe NSs as a versatile platform to significantly raise the activities on different photocatalysts, but, more importantly, underscores the immense importance of atomic-level synthesis and exploration on 2D materials for energy conversion and storage.

摘要

通过光催化水分解来产生太阳能氢气(H2)具有实际应用前景,对环境无害,并且可持续实现碳中和。因此,理解如何在原子水平上可控地设计光催化剂非常重要。在这项工作中,报告了通过原子层工程对缺陷的 ReSe 纳米片(NSs)进行修饰,从而显著提高了包括 TiO2、CdS、ZnIn2S4 和 C3N4 在内的各种半导体光催化剂的光催化 H2 析出性能。先进的表征技术,如原子分辨率的像差校正扫描透射电子显微镜(AC-STEM)、基于同步加速器的 X 射线吸收近边结构(XANES)、原位 X 射线光电子能谱(XPS)、瞬态表面光电压(SPV)光谱和瞬态光致发光(PL)光谱,以及理论计算证实,强烈耦合的 ReSe/TiO2 界面和缺陷 ReSe NSs 的大量原子级活性位导致 ReSe/TiO2 的活性显著提高。这项工作不仅首次实现了 ReSe NSs 的原子级工程,将其作为一个通用平台,显著提高了不同光催化剂的活性,而且更重要的是,强调了原子级合成和二维材料探索对于能量转换和存储的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验