Suppr超能文献

基因表达谱作为癫痫易感性的预测因子。

Gene Expression Profile as a Predictor of Seizure Liability.

机构信息

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.

Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FIN-70701 Kuopio, Finland.

出版信息

Int J Mol Sci. 2023 Feb 18;24(4):4116. doi: 10.3390/ijms24044116.

Abstract

Analysis platforms to predict drug-induced seizure liability at an early phase of drug development would improve safety and reduce attrition and the high cost of drug development. We hypothesized that a drug-induced in vitro transcriptomics signature predicts its ictogenicity. We exposed rat cortical neuronal cultures to non-toxic concentrations of 34 compounds for 24 h; 11 were known to be ictogenic (tool compounds), 13 were associated with a high number of seizure-related adverse event reports in the clinical FDA Adverse Event Reporting System (FAERS) database and systematic literature search (FAERS-positive compounds), and 10 were known to be non-ictogenic (FAERS-negative compounds). The drug-induced gene expression profile was assessed from RNA-sequencing data. Transcriptomics profiles induced by the tool, FAERS-positive and FAERS-negative compounds, were compared using bioinformatics and machine learning. Of the 13 FAERS-positive compounds, 11 induced significant differential gene expression; 10 of the 11 showed an overall high similarity to the profile of at least one tool compound, correctly predicting the ictogenicity. Alikeness-% based on the number of the same differentially expressed genes correctly categorized 85%, the Gene Set Enrichment Analysis score correctly categorized 73%, and the machine-learning approach correctly categorized 91% of the FAERS-positive compounds with reported seizure liability currently in clinical use. Our data suggest that the drug-induced gene expression profile could be used as a predictive biomarker for seizure liability.

摘要

分析平台可以在药物开发的早期预测药物引起的癫痫发作的可能性,从而提高安全性,减少药物开发的淘汰率和高成本。我们假设药物引起的体外转录组学特征可以预测其致痫性。我们将大鼠皮质神经元培养物暴露于 34 种化合物的非毒性浓度下 24 小时;其中 11 种是已知的致痫性化合物(工具化合物),13 种与临床 FDA 不良事件报告系统(FAERS)数据库和系统文献检索中与大量与癫痫相关的不良事件报告相关联(FAERS 阳性化合物),10 种是已知的非致痫性化合物(FAERS 阴性化合物)。从 RNA-seq 数据评估药物诱导的基因表达谱。使用生物信息学和机器学习比较工具、FAERS 阳性和 FAERS 阴性化合物诱导的转录组学谱。在 13 种 FAERS 阳性化合物中,有 11 种诱导了显著的差异基因表达;其中 10 种与至少一种工具化合物的特征具有总体高度相似性,正确预测了致痫性。基于相同差异表达基因数量的相似性百分比正确分类了 85%,基因集富集分析(Gene Set Enrichment Analysis)评分正确分类了 73%,而基于机器学习的方法正确分类了 91%的具有已报告癫痫发作倾向的临床使用中的 FAERS 阳性化合物。我们的数据表明,药物诱导的基因表达谱可以用作癫痫发作倾向的预测生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8130/9963992/bda6dd227308/ijms-24-04116-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验