Zhang Heng, Shao Xuanyu, Zhan Zhigang, Sarker Mrittunjoy, Sui Pang-Chieh, Chuang Po-Ya Abel, Pan Mu
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Membranes (Basel). 2023 Feb 10;13(2):219. doi: 10.3390/membranes13020219.
A microporous layer (MPL) is a transition layer with a porous material structure, located between the gas diffusion layer (GDL) and catalyst layer (CL) in a proton exchange membrane fuel cell (PEMFC). It not only significantly improves electron transfer and heat conduction in membrane electrode assembly, but also effectively manages liquid water transport to enhance the fuel cell performance. The MPL is usually coated on one side of the GDL. The fragile nature of MPL makes it challenging to characterize the effective transport properties using experimental methods. In this study, a stochastic numerical method is implemented to reconstruct the three-dimensional microstructure of an MPL consisting of carbon particles and PTFE. The reliability of the MPL reconstructed model is validated using experimental data. The relationship between the effective transport properties and the compression strain is obtained using the Pore Scale Model (PSM), while the relationship between the liquid water saturation and capillary pressure is solved by Lattice Boltzmann Method (LBM). The effective transport properties in the MPL are then imported into the two-phase flow fuel cell model. It is found that the effective transport parameters in MPL obtained by PSM and LBM can improve the accuracy of the model calculation. This study provides an effective method to reconstruct the microstructure of MPL that can generate precise MPL transport parameters for utilization in various PEMFC performance prediction models.
微孔层(MPL)是一种具有多孔材料结构的过渡层,位于质子交换膜燃料电池(PEMFC)的气体扩散层(GDL)和催化剂层(CL)之间。它不仅显著改善了膜电极组件中的电子转移和热传导,还有效地管理了液态水的传输,以提高燃料电池性能。MPL通常涂覆在GDL的一侧。MPL的脆弱性质使得使用实验方法表征其有效传输特性具有挑战性。在本研究中,采用一种随机数值方法来重建由碳颗粒和聚四氟乙烯组成的MPL的三维微观结构。利用实验数据验证了MPL重建模型的可靠性。使用孔隙尺度模型(PSM)获得有效传输特性与压缩应变之间的关系,同时通过格子玻尔兹曼方法(LBM)求解液态水饱和度与毛细管压力之间的关系。然后将MPL中的有效传输特性导入两相流燃料电池模型。结果发现,通过PSM和LBM获得的MPL中的有效传输参数可以提高模型计算的准确性。本研究提供了一种重建MPL微观结构的有效方法,该方法可以生成精确的MPL传输参数,用于各种PEMFC性能预测模型。