Liu Chengyou, Sun Yan, Davis Rebecca, Cardona Silvia T, Hu Pingzhao
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada.
Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada.
J Cheminform. 2023 Feb 26;15(1):29. doi: 10.1186/s13321-023-00698-9.
Graph convolutional neural networks (GCNs) have been repeatedly shown to have robust capacities for modeling graph data such as small molecules. Message-passing neural networks (MPNNs), a group of GCN variants that can learn and aggregate local information of molecules through iterative message-passing iterations, have exhibited advancements in molecular modeling and property prediction. Moreover, given the merits of Transformers in multiple artificial intelligence domains, it is desirable to combine the self-attention mechanism with MPNNs for better molecular representation. We propose an atom-bond transformer-based message-passing neural network (ABT-MPNN), to improve the molecular representation embedding process for molecular property predictions. By designing corresponding attention mechanisms in the message-passing and readout phases of the MPNN, our method provides a novel architecture that integrates molecular representations at the bond, atom and molecule levels in an end-to-end way. The experimental results across nine datasets show that the proposed ABT-MPNN outperforms or is comparable to the state-of-the-art baseline models in quantitative structure-property relationship tasks. We provide case examples of Mycobacterium tuberculosis growth inhibitors and demonstrate that our model's visualization modality of attention at the atomic level could be an insightful way to investigate molecular atoms or functional groups associated with desired biological properties. The new model provides an innovative way to investigate the effect of self-attention on chemical substructures and functional groups in molecular representation learning, which increases the interpretability of the traditional MPNN and can serve as a valuable way to investigate the mechanism of action of drugs.
图卷积神经网络(GCN)已被多次证明在对小分子等图数据进行建模方面具有强大的能力。消息传递神经网络(MPNN)是一组GCN变体,它可以通过迭代消息传递迭代来学习和聚合分子的局部信息,在分子建模和性质预测方面取得了进展。此外,鉴于Transformer在多个人工智能领域的优点,将自注意力机制与MPNN相结合以获得更好的分子表示是很有必要的。我们提出了一种基于原子键Transformer的消息传递神经网络(ABT-MPNN),以改进用于分子性质预测的分子表示嵌入过程。通过在MPNN的消息传递和读出阶段设计相应的注意力机制,我们的方法提供了一种新颖的架构,以端到端的方式在键、原子和分子水平上整合分子表示。在九个数据集上的实验结果表明,所提出的ABT-MPNN在定量构效关系任务中优于或与最先进的基线模型相当。我们提供了结核分枝杆菌生长抑制剂的案例,并证明我们模型在原子水平上的注意力可视化方式可能是研究与所需生物学性质相关的分子原子或官能团的一种有洞察力的方法。新模型为研究自注意力在分子表示学习中对化学子结构和官能团的影响提供了一种创新方法,这增加了传统MPNN的可解释性,并可作为研究药物作用机制的一种有价值的方法。