Suppr超能文献

EIFDAA:工业物联网中具有功能丢弃对抗攻击的入侵检测系统评估

EIFDAA: Evaluation of an IDS with function-discarding adversarial attacks in the IIoT.

作者信息

Li Shiming, Wang Jingxuan, Wang Yuhe, Zhou Guohui, Zhao Yan

机构信息

School of Computer Science and Information Engineering, Harbin Normal University, Harbin, 150025, China.

School of Information Technology, Luoyang Normal University, Luoyang, 471000, China.

出版信息

Heliyon. 2023 Feb 9;9(2):e13520. doi: 10.1016/j.heliyon.2023.e13520. eCollection 2023 Feb.

Abstract

The complexity of the Industrial Internet of Things (IIoT) presents higher requirements for intrusion detection systems (IDSs). An adversarial attack is a threat to the security of machine learning-based IDSs. For such a complex situation, this paper analyses adversarial attackers' ability to deceive IDSs used in the IIoT and proposes the evaluation of an IDS with function-discarding adversarial attacks in the IIoT (EIFDAA), a framework that can evaluate the defence performance of machine learning-based IDSs against various adversarial attack algorithms. This framework is composed of two main processes: adversarial evaluation and adversarial training. Adversarial evaluation can diagnose IDS that is unfitting in adversarial environments. Then, adversarial training is used to treat the weak IDS. In this framework, five well-known adversarial attacks, the fast-gradient sign method (FGSM), basic iterative method (BIM), projected gradient descent (PGD), DeepFool and Wasserstein generative adversarial network with gradient penalty (WGAN-GP) are used to convert attack samples into adversarial samples to simulate the adversarial environment. This study evaluates the capability of mainstream machine learning techniques as intrusion detection models to defend against adversarial attacks, and retrains these detectors to improve the robustness of IDSs through adversarial training. In addition, the framework includes an adversarial attack model that discards the attack function of the attack samples in the IIoT. Through the experimental results on the X-IIoTID dataset, the dropped adversarial detection rate of these detectors to nearly zero demonstrates that an adversarial attack has black-box attack capabilities for these IDSs. Additionally, the improved IDSs retrained with adversarial samples can effectively defend against adversarial attackers while maintaining the original detection rate for the attack samples. EIFDAA is expected to be a solution that can be applied to IDS for improving the robustness in the IIoT.

摘要

工业物联网(IIoT)的复杂性对入侵检测系统(IDS)提出了更高的要求。对抗攻击是对基于机器学习的IDS安全的一种威胁。针对这种复杂情况,本文分析了对抗攻击者欺骗IIoT中使用的IDS的能力,并提出了工业物联网中基于功能丢弃对抗攻击的IDS评估方法(EIFDAA),这是一个可以评估基于机器学习的IDS针对各种对抗攻击算法的防御性能的框架。该框架由两个主要过程组成:对抗评估和对抗训练。对抗评估可以诊断出在对抗环境中不适用的IDS。然后,使用对抗训练来处理性能较弱的IDS。在这个框架中,使用了五种著名的对抗攻击方法,即快速梯度符号法(FGSM)、基本迭代法(BIM)、投影梯度下降法(PGD)、深度愚弄法(DeepFool)和带梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP),将攻击样本转换为对抗样本以模拟对抗环境。本研究评估了主流机器学习技术作为入侵检测模型抵御对抗攻击的能力,并通过对抗训练对这些检测器进行重新训练,以提高IDS的鲁棒性。此外,该框架包括一个对抗攻击模型,该模型丢弃了IIoT中攻击样本的攻击功能。通过在X-IIoTID数据集上的实验结果,这些检测器对丢弃对抗检测率降至近零,表明对抗攻击对这些IDS具有黑盒攻击能力。此外,用对抗样本重新训练的改进后的IDS可以有效地抵御对抗攻击者,同时保持对攻击样本的原始检测率。EIFDAA有望成为一种可应用于IDS以提高IIoT中鲁棒性的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c15c/9950836/e38e07fb052c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验