Visual Computing Lab, Illinois Institute of Technology, Chicago, IL 60616, USA.
Sensors (Basel). 2023 Feb 10;23(4):2005. doi: 10.3390/s23042005.
Weakly supervised pose estimation can be used to assist unsupervised body part segmentation and concealed item detection. The accuracy of pose estimation is essential for precise body part segmentation and accurate concealed item detection. In this paper, we show how poses obtained from an RGB pretrained 2D pose detector can be modified for the backscatter image domain. The 2D poses are refined using RANSAC bundle adjustment to minimize the projection loss in 3D. Furthermore, we show how 2D poses can be optimized using a newly proposed 3D-to-2D pose correction network weakly supervised with pose prior regularizers and multi-view pose and posture consistency losses. The optimized 2D poses are used to segment human body parts. We then train a body-part-aware anomaly detection network to detect foreign (concealed threat) objects on segmented body parts. Our work is applied to the TSA passenger screening dataset containing millimeter wave scan images of airport travelers annotated with only binary labels that indicate whether a foreign object is concealed on a body part. Our proposed approach significantly improves the detection accuracy of TSA 2D backscatter images in existing works with a state-of-the-art performance of 97% F1-score, 0.0559 log-loss on the TSA-PSD test-set, and a 74% reduction in 2D pose error.
弱监督姿态估计可用于辅助无监督的身体部位分割和隐藏物品检测。姿态估计的准确性对于精确的身体部位分割和准确的隐藏物品检测至关重要。在本文中,我们展示了如何将从 RGB 预训练的 2D 姿态检测器获得的姿态修改为后向散射图像域。使用 RANSAC 束调整来细化 2D 姿态,以最小化 3D 中的投影损失。此外,我们展示了如何使用新提出的 3D 到 2D 姿态校正网络对 2D 姿态进行优化,该网络通过姿态先验正则化和多视图姿态和姿势一致性损失进行弱监督。优化后的 2D 姿态用于分割人体部位。然后,我们训练一个具有身体部位感知的异常检测网络,以检测分割后的身体部位上的外来(隐藏威胁)物体。我们的工作应用于 TSA 乘客筛选数据集,该数据集包含机场旅行者的毫米波扫描图像,仅用二进制标签注释,指示身体部位上是否隐藏了外来物体。我们提出的方法显著提高了 TSA 2D 后向散射图像的检测准确性,在 TSA-PSD 测试集上的性能达到了 97%的 F1 得分,0.0559 的对数损失,2D 姿态误差降低了 74%。