Suppr超能文献

机器学习算法在街道交通预测中的评估:智能家居应用案例。

Evaluation of Machine Leaning Algorithms for Streets Traffic Prediction: A Smart Home Use Case.

机构信息

Learning, Data and Robotics Laboratory, ESIEA Graduate Engineering School, 75005 Paris, France.

Nokia, 91300 Massy, France.

出版信息

Sensors (Basel). 2023 Feb 15;23(4):2174. doi: 10.3390/s23042174.

Abstract

This paper defines a smart home use case to automatically adjust home temperature and/or hot water. The main objective is to reduce the energy consumption of cooling, heating and hot water systems in smart homes. To this end, the residents set a temperature (i.e., X degree Celsius) for home and/or hot water. When the residents leave homes (e.g., for work), they turn off the cooling or heating devices. A few minutes before arriving at their residences, the cooling or heating devices start working automatically to adjust the home or water temperature according to the residents' preference (i.e., X degree Celsius). This can help reduce the energy consumption of these devices. To estimate the arrival time of the residents (i.e., drivers), this paper uses a machine learning-based street traffic prediction system. Unlike many related works that use machine learning for tracking and predicting residents' behaviors inside their homes, this paper focuses on predicting resident behavior outside their home (i.e., arrival time as a context) to reduce the energy consumption of smart homes. One main objective of this paper is to find the most appropriate machine learning and neural network-based (MLNN) algorithm that can be integrated into the street traffic prediction system. To evaluate the performance of several MLNN algorithms, we utilize an Uber's dataset for the city of San Francisco and complete the missing values by applying an imputation algorithm. The prediction system can also be used as a route recommender to offer the quickest route for drivers.

摘要

本文定义了一个智能家居用例,用于自动调节家庭温度和/或热水。主要目的是降低智能家居中冷却、加热和热水系统的能耗。为此,居民为家庭和/或热水设定一个温度(即 X 摄氏度)。当居民离开家(例如上班)时,他们关闭冷却或加热设备。在到达住所前几分钟,冷却或加热设备会自动启动,根据居民的喜好(即 X 摄氏度)调节家庭或水温。这有助于降低这些设备的能耗。为了估计居民(即司机)的到达时间,本文使用基于机器学习的街道交通预测系统。与许多使用机器学习跟踪和预测居民在其家中行为的相关工作不同,本文侧重于预测居民在家外的行为(即作为上下文的到达时间),以降低智能家居的能耗。本文的一个主要目标是找到最适合的基于机器学习和神经网络的(MLNN)算法,可以集成到街道交通预测系统中。为了评估几种 MLNN 算法的性能,我们使用了旧金山城市的优步数据集,并通过应用插补算法来完成缺失值。该预测系统还可以用作路线推荐器,为司机提供最快的路线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c4/9962288/6f1102681632/sensors-23-02174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验