Suppr超能文献

一种使用 3D 向量心电图图检测 ECG 中 R 波峰的深度学习架构,具有增强的精度。

A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision.

机构信息

Epsidy, 54000 Nancy, France.

Ecole Nationale d'Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent Systems, Université de Sousse, Sousse 4023, Tunisia.

出版信息

Sensors (Basel). 2023 Feb 18;23(4):2288. doi: 10.3390/s23042288.

Abstract

Providing reliable detection of QRS complexes is key in automated analyses of electrocardiograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical algorithms, deep learning (DL) architectures have demonstrated superior accuracy and high generalization capacity. Furthermore, they can be embedded on edge devices for real-time inference. 3D vectorcardiograms (VCG) provide a unifying framework for detecting R-peaks regardless of the acquisition strategy or number of ECG leads. In this article, a DL architecture was demonstrated to provide enhanced precision when trained and applied on 3D VCG, with no pre-processing nor post-processing steps. Experiments were conducted on four different public databases. Using the proposed approach, high F1-scores of 99.80% and 99.64% were achieved in leave-one-out cross-validation and cross-database validation protocols, respectively. False detections, measured by a precision of 99.88% or more, were significantly reduced compared with recent state-of-the-art methods tested on the same databases, without penalty in the number of missed peaks, measured by a recall of 99.39% or more. This approach can provide new applications for devices where precision, or positive predictive value, is essential, for instance cardiac magnetic resonance imaging.

摘要

准确可靠地检测 QRS 波群是心电图(ECG)自动分析的关键。准确和及时的 R 波峰检测为基于 ECG 的诊断以及同步放射学、电生理学或其他医疗设备提供了基础。与经典算法相比,深度学习(DL)架构已证明具有更高的准确性和高泛化能力。此外,它们可以嵌入到边缘设备中进行实时推理。三维向量心电图(VCG)为检测 R 波峰提供了一个统一的框架,无论采集策略或 ECG 导联数量如何。本文展示了一种 DL 架构,当在 3D VCG 上进行训练和应用时,可以提供增强的精度,无需预处理或后处理步骤。在四个不同的公共数据库上进行了实验。使用所提出的方法,在留一交叉验证和跨数据库验证协议中,分别实现了 99.80%和 99.64%的高 F1 分数。与在相同数据库上测试的最新最先进方法相比,假阳性检测(通过精度达到 99.88%或更高来衡量)显著减少,而错过峰值的数量(通过召回率达到 99.39%或更高来衡量)没有受到影响。这种方法可以为需要精度(或阳性预测值)的设备提供新的应用,例如心脏磁共振成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8107/9963088/c8827d8bc354/sensors-23-02288-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验