Suppr超能文献

大气条件下非环氧化物途径控制的有机过氧自由基与不饱和化合物的反应。

The reaction of organic peroxy radicals with unsaturated compounds controlled by a non-epoxide pathway under atmospheric conditions.

机构信息

KTH, Royal Institute of Technology, Department of Chemistry, 114 28 Stockholm, Sweden.

Université Lyon 1 and CNRS, UMR 5246, ICBMS, 69626 Villeurbanne, France.

出版信息

Phys Chem Chem Phys. 2023 Mar 15;25(11):7772-7782. doi: 10.1039/d2cp05166d.

Abstract

Today, the reactions of gas-phase organic peroxy radicals (RO) with unsaturated Volatile Organic Compounds (VOC) are expected to be negligible at room temperature and ignored in atmospheric chemistry. This assumption is based on combustion studies ( ≥ 360 K), which were the only experimental data available for these reactions until recently. These studies also reported epoxide formation as the only reaction channel. In this work, the products of the reactions of 1-pentylperoxy (CHO) and methylperoxy (CHO) with 2,3-dimethyl-2-butene ("2,3DM2B") and isoprene were investigated at = 300 ± 5 K with Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) and Gas Chromatography/Electron Impact Mass Spectrometry. Unlike what was expected, the experiments showed no measurable formation of epoxide. However, RO + alkene was found to produce compounds retaining the alkene structure, such as 3-hydroxy-3-methyl-2-butanone (CHO) with 2,3DM2B and 2-hydroxy-2-methyl-3-butenal (CHO) and methyl vinyl ketone with isoprene, suggesting that these reactions proceed through another reaction pathway under atmospheric conditions. We propose that, instead of forming an epoxide, the alkyl radical produced by the addtion of RO onto the alkene reacts with oxygen, producing a peroxy radical. The corresponding mechanisms are consistent with the products observed in the experiments. This alternative pathway implies that, under atmospheric conditions, RO + alkene reactions are kinetically limited by the initial addition step and not by the epoxide formation proposed until now for combustion systems. Extrapolating the combustion data to room temperature thus underestimates the rate coefficients, which is consistent with those recently reported for these reactions at room temperature. While slow for many classes of RO, these reactions could be non-negligible at room temperature for some functionalized RO. They might thus need to be considered in laboratory studies using large alkene concentrations and in biogenically-dominated regions of the atmosphere.

摘要

今天,气相有机过氧自由基(RO)与不饱和挥发性有机化合物(VOC)的反应预计在室温下可以忽略不计,并且在大气化学中可以忽略不计。这种假设是基于燃烧研究(≥360 K)得出的,这些研究是这些反应唯一的实验数据,直到最近才可用。这些研究还报告了环氧化物的形成是唯一的反应途径。在这项工作中,在 300 ± 5 K 下使用质子转移反应飞行时间质谱(PTR-ToF-MS)和气相色谱/电子冲击质谱(GC/EI-MS)研究了 1-戊基过氧基(CHO)和甲基过氧基(CHO)与 2,3-二甲基-2-丁烯(“2,3DM2B”)和异戊二烯的反应产物。与预期的不同,实验没有检测到环氧化物的生成。然而,RO + 烯烃被发现会产生保留烯烃结构的化合物,例如 2,3DM2B 与 CHO 反应生成 3-羟基-3-甲基-2-丁酮(CHO),与异戊二烯反应生成 2-羟基-2-甲基-3-丁醛(CHO)和甲基乙烯基酮,这表明在大气条件下,这些反应通过另一种反应途径进行。我们提出,RO 加成到烯烃上生成的烷基自由基不是形成环氧化物,而是与氧气反应生成过氧自由基。相应的机理与实验中观察到的产物一致。这种替代途径意味着,在大气条件下,RO + 烯烃反应的动力学受到初始加成步骤的限制,而不是像燃烧系统中迄今为止提出的形成环氧化物的步骤限制。将燃烧数据外推到室温会低估速率系数,这与最近在室温下报道的这些反应的速率系数一致。对于许多类 RO 来说,这些反应的速度可能较慢,但对于某些官能化的 RO,它们在室温下可能不容忽视。因此,在使用大浓度烯烃的实验室研究中和在大气中以生物为主导的区域中,它们可能需要被考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb73/10015623/1d5fe1ac0322/d2cp05166d-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验