Suppr超能文献

成人中枢性睡眠呼吸暂停的药物治疗。

Pharmacological treatment for central sleep apnoea in adults.

机构信息

Cochrane Brazil. Núcleo de Avaliação Tecnologica em Saúde, São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP). Disciplina de Medicina de Urgência e Medicina Baseada em Evidências, São Paulo, Brazil.

Cochrane Brazil. Núcleo de Avaliação Tecnologica em Saúde, São Paulo, Brazil; Biological and Health Sciences Department, Universidade Federal do Amapá, Sao Paulo, Brazil.

出版信息

Cochrane Database Syst Rev. 2023 Feb 27;2(2):CD012922. doi: 10.1002/14651858.CD012922.pub2.

Abstract

BACKGROUND

The term central sleep apnoea (CSA) encompasses diverse clinical situations where a dysfunctional drive to breathe leads to recurrent respiratory events, namely apnoea (complete absence of ventilation) and hypopnoea sleep (insufficient ventilation) during sleep. Studies have demonstrated that CSA responds to some extent to pharmacological agents with distinct mechanisms, such as sleep stabilisation and respiratory stimulation. Some therapies for CSA are associated with improved quality of life, although the evidence on this association is uncertain. Moreover, treatment of CSA with non-invasive positive pressure ventilation is not always effective or safe and may result in a residual apnoea-hypopnoea index.

OBJECTIVES

To evaluate the benefits and harms of pharmacological treatment compared with active or inactive controls for central sleep apnoea in adults.

SEARCH METHODS

We used standard, extensive Cochrane search methods. The latest search date was 30 August 2022.

SELECTION CRITERIA

We included parallel and cross-over randomised controlled trials (RCTs) that evaluated any type of pharmacological agent compared with active controls (e.g. other medications) or passive controls (e.g. placebo, no treatment or usual care) in adults with CSA as defined by the International Classification of Sleep Disorders 3rd Edition. We did not exclude studies based on the duration of intervention or follow-up. We excluded studies focusing on CSA due to periodic breathing at high altitudes.

DATA COLLECTION AND ANALYSIS

We used standard Cochrane methods. Our primary outcomes were central apnoea-hypopnoea index (cAHI), cardiovascular mortality and serious adverse events. Our secondary outcomes were quality of sleep, quality of life, daytime sleepiness, AHI, all-cause mortality, time to life-saving cardiovascular intervention, and non-serious adverse events. We used GRADE to assess certainty of evidence for each outcome.

MAIN RESULTS

We included four cross-over RCTs and one parallel RCT, involving a total of 68 participants. Mean age ranged from 66 to 71.3 years and most participants were men. Four trials recruited people with CSA associated with heart failure, and one study included people with primary CSA. Types of pharmacological agents were acetazolamide (carbonic anhydrase inhibitor), buspirone (anxiolytic), theophylline (methylxanthine derivative) and triazolam (hypnotic), which were given for between three days and one week. Only the study on buspirone reported a formal evaluation of adverse events. These events were rare and mild. No studies reported serious adverse events, quality of sleep, quality of life, all-cause mortality, or time to life-saving cardiovascular intervention. Carbonic anhydrase inhibitors versus inactive control Results were from two studies of acetazolamide versus placebo (n = 12) and acetazolamide versus no acetazolamide (n = 18) for CSA associated with heart failure. One study reported short-term outcomes and the other reported intermediate-term outcomes. We are uncertain whether carbonic anhydrase inhibitors compared to inactive control reduce cAHI in the short term (mean difference (MD) -26.00 events per hour, 95% CI -43.84 to -8.16; 1 study, 12 participants; very low certainty). Similarly, we are uncertain whether carbonic anhydrase inhibitors compared to inactive control reduce AHI in the short term (MD -23.00 events per hour, 95% CI -37.70 to 8.30; 1 study, 12 participants; very low certainty) or in the intermediate term (MD -6.98 events per hour, 95% CI -10.66 to -3.30; 1 study, 18 participants; very low certainty). The effect of carbonic anhydrase inhibitors on cardiovascular mortality in the intermediate term was also uncertain (odds ratio (OR) 0.21, 95% CI 0.02 to 2.48; 1 study, 18 participants; very low certainty). Anxiolytics versus inactive control Results were based on one study of buspirone versus placebo for CSA associated with heart failure (n = 16). The median difference between groups for cAHI was -5.00 events per hour (IQR -8.00 to -0.50), the median difference for AHI was -6.00 events per hour (IQR -8.80 to -1.80), and the median difference on the Epworth Sleepiness Scale for daytime sleepiness was 0 points (IQR -1.0 to 0.00). Methylxanthine derivatives versus inactive control Results were based on one study of theophylline versus placebo for CSA associated with heart failure (n = 15). We are uncertain whether methylxanthine derivatives compared to inactive control reduce cAHI (MD -20.00 events per hour, 95% CI -32.15 to -7.85; 15 participants; very low certainty) or AHI (MD -19.00 events per hour, 95% CI -30.27 to -7.73; 15 participants; very low certainty). Hypnotics versus inactive control Results were based on one trial of triazolam versus placebo for primary CSA (n = 5). Due to very serious methodological limitations and insufficient reporting of outcome measures, we were unable to draw any conclusions regarding the effects of this intervention.

AUTHORS' CONCLUSIONS: There is insufficient evidence to support the use of pharmacological therapy in the treatment of CSA. Although small studies have reported positive effects of certain agents for CSA associated with heart failure in reducing the number of respiratory events during sleep, we were unable to assess whether this reduction may impact the quality of life of people with CSA, owing to scarce reporting of important clinical outcomes such as sleep quality or subjective impression of daytime sleepiness. Furthermore, the trials mostly had short-term follow-up. There is a need for high-quality trials that evaluate longer-term effects of pharmacological interventions.

摘要

背景

中枢性睡眠呼吸暂停(CSA)一词涵盖了多种临床情况,在这些情况下,呼吸驱动功能障碍导致反复出现呼吸事件,即呼吸暂停(完全无通气)和睡眠呼吸不足(通气不足)。研究表明,CSA 在某种程度上对具有不同机制的药物有反应,例如睡眠稳定和呼吸刺激。一些 CSA 治疗方法与生活质量的改善相关,但关于这种关联的证据并不确定。此外,并非所有 CSA 患者都能从无创性正压通气治疗中获益,而且这种治疗方法可能会导致残余呼吸暂停-低通气指数。

目的

评估与主动或被动对照相比,药物治疗对成人 CSA 的疗效和安全性。

检索策略

我们使用标准的、广泛的 Cochrane 检索方法。最新的检索日期是 2022 年 8 月 30 日。

纳入标准

我们纳入了平行和交叉随机对照试验(RCT),这些试验评估了任何类型的药物与主动对照(例如其他药物)或被动对照(例如安慰剂、无治疗或常规护理)相比,在 CSA 患者中的疗效和安全性,这些患者的 CSA 是由国际睡眠障碍分类第 3 版定义的。我们没有根据干预或随访的持续时间排除研究。我们排除了由于高海拔地区周期性呼吸而导致 CSA 的研究。

数据收集和分析

我们使用标准的 Cochrane 方法。我们的主要结局是中枢性呼吸暂停-低通气指数(cAHI)、心血管死亡率和严重不良事件。我们的次要结局是睡眠质量、生活质量、日间嗜睡、AHI、全因死亡率、挽救生命的心血管干预时间和非严重不良事件。我们使用 GRADE 评估每个结局的证据确定性。

主要结果

我们纳入了四项交叉 RCT 和一项平行 RCT,共涉及 68 名参与者。平均年龄为 66 至 71.3 岁,大多数参与者为男性。四项试验招募了与心力衰竭相关的 CSA 患者,一项研究纳入了原发性 CSA 患者。药物类型包括乙酰唑胺(碳酸酐酶抑制剂)、丁螺环酮(抗焦虑药)、茶碱(黄嘌呤衍生物)和三唑仑(催眠药),使用时间为 3 天至 1 周不等。只有关于丁螺环酮的研究报告了正式的不良事件评估。这些事件很少且轻微。没有研究报告严重不良事件、睡眠质量、生活质量、全因死亡率或挽救生命的心血管干预时间。

碳酸酐酶抑制剂与安慰剂对照

来自两项关于乙酰唑胺与安慰剂(n = 12)和乙酰唑胺与无乙酰唑胺(n = 18)治疗心力衰竭相关 CSA 的研究。一项研究报告了短期结局,另一项研究报告了中期结局。我们不确定与安慰剂相比,碳酸酐酶抑制剂是否能在短期内减少 cAHI(平均差值(MD)-26.00 次/小时,95%CI-43.84 至-8.16;1 项研究,12 名参与者;极低确定性)。同样,我们也不确定碳酸酐酶抑制剂是否能在短期内(MD-23.00 次/小时,95%CI-37.70 至 8.30;1 项研究,12 名参与者;极低确定性)或中期(MD-6.98 次/小时,95%CI-10.66 至-3.30;1 项研究,18 名参与者;极低确定性)减少 AHI。我们对中期碳酸酐酶抑制剂对心血管死亡率的影响也不确定(比值比(OR)0.21,95%CI 0.02 至 2.48;1 项研究,18 名参与者;极低确定性)。

抗焦虑药与安慰剂对照

一项关于丁螺环酮与心力衰竭相关 CSA 患者安慰剂的研究(n = 16)提供了结果。组间的中位 cAHI 差异为-5.00 次/小时(IQR-8.00 至-0.50),中位 AHI 差异为-6.00 次/小时(IQR-8.80 至-1.80),日间嗜睡的 Epworth 睡眠量表评分差异为 0 分(IQR-1.0 至 0.00)。

黄嘌呤衍生物与安慰剂对照

一项关于茶碱与心力衰竭相关 CSA 患者安慰剂的研究(n = 15)提供了结果。我们不确定与安慰剂相比,黄嘌呤衍生物是否能减少 cAHI(MD-20.00 次/小时,95%CI-32.15 至-7.85;15 名参与者;极低确定性)或 AHI(MD-19.00 次/小时,95%CI-30.27 至-7.73;15 名参与者;极低确定性)。

催眠药与安慰剂对照

一项关于三唑仑与原发性 CSA 患者安慰剂的研究(n = 5)提供了结果。由于存在非常严重的方法学局限性和对结局测量的报告不足,我们无法得出关于这种干预效果的任何结论。

结论

目前没有足够的证据支持使用药物治疗 CSA。尽管一些小型研究报告了某些药物对心力衰竭相关 CSA 的呼吸暂停事件数量的减少有积极作用,但由于对重要临床结局(如睡眠质量或主观日间嗜睡感)的报告很少,我们无法评估这种减少是否会影响 CSA 患者的生活质量。此外,这些试验大多随访时间较短。需要进行高质量的试验来评估药物干预的长期效果。

相似文献

1
Pharmacological treatment for central sleep apnoea in adults.
Cochrane Database Syst Rev. 2023 Feb 27;2(2):CD012922. doi: 10.1002/14651858.CD012922.pub2.
2
Non-invasive positive pressure ventilation for central sleep apnoea in adults.
Cochrane Database Syst Rev. 2022 Oct 24;10(10):CD012889. doi: 10.1002/14651858.CD012889.pub2.
3
Pharmacological intervention for irritability, aggression, and self-injury in autism spectrum disorder (ASD).
Cochrane Database Syst Rev. 2023 Oct 9;10(10):CD011769. doi: 10.1002/14651858.CD011769.pub2.
4
Non-invasive positive airway pressure therapy for improving erectile dysfunction in men with obstructive sleep apnoea.
Cochrane Database Syst Rev. 2021 Sep 23;9(9):CD013169. doi: 10.1002/14651858.CD013169.pub2.
5
Silymarin for adults with metabolic dysfunction-associated steatotic liver disease.
Cochrane Database Syst Rev. 2025 Jun 24;6(6):CD015524. doi: 10.1002/14651858.CD015524.pub2.
6
Foetal haemoglobin inducers for reducing blood transfusion in non-transfusion-dependent beta-thalassaemias.
Cochrane Database Syst Rev. 2023 Jan 13;1(1):CD013767. doi: 10.1002/14651858.CD013767.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
8
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

引用本文的文献

2
Central sleep apnoea: not just one phenotype.
Eur Respir Rev. 2024 Mar 27;33(171). doi: 10.1183/16000617.0141-2023. Print 2024 Jan 31.
3
Association between sleep-related phenotypes and gut microbiota: a two-sample bidirectional Mendelian randomization study.
Front Microbiol. 2024 Feb 2;15:1341643. doi: 10.3389/fmicb.2024.1341643. eCollection 2024.

本文引用的文献

1
Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure.
Eur J Heart Fail. 2022 Oct;24(10):1940-1949. doi: 10.1002/ejhf.2628. Epub 2022 Aug 8.
2
Effect of Zolpidem on nocturnal arousals and susceptibility to central sleep apnea.
Sleep Breath. 2023 Mar;27(1):173-180. doi: 10.1007/s11325-022-02593-3. Epub 2022 Mar 14.
3
Sacubitril-valsartan initiation in chronic heart failure patients impacts sleep apnea: the ENTRESTO-SAS study.
ESC Heart Fail. 2021 Aug;8(4):2513-2526. doi: 10.1002/ehf2.13455. Epub 2021 Jun 8.
4
Mirtazapine reduces susceptibility to hypocapnic central sleep apnea in males with sleep-disordered breathing: a pilot study.
J Appl Physiol (1985). 2021 Jul 1;131(1):414-423. doi: 10.1152/japplphysiol.00838.2020. Epub 2021 Jun 3.
8
Acetazolamide for OSA and Central Sleep Apnea: A Comprehensive Systematic Review and Meta-Analysis.
Chest. 2020 Dec;158(6):2632-2645. doi: 10.1016/j.chest.2020.06.078. Epub 2020 Aug 5.
9
Upright Cheyne-Stokes Respiration in Patients With Heart Failure.
J Am Coll Cardiol. 2020 Jun 16;75(23):2934-2946. doi: 10.1016/j.jacc.2020.04.033.
10
Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial.
Eur J Heart Fail. 2021 Feb;23(2):312-320. doi: 10.1002/ejhf.1854. Epub 2020 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验