Che Menglu, Pullenayegum Eleanor
Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA.
Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, ON, Canada.
Med Decis Making. 2023 Apr;43(3):387-396. doi: 10.1177/0272989X231159381. Epub 2023 Mar 3.
In eliciting utilities to value multiattribute utility instruments, discrete choice experiments (DCEs) administered online are less costly than interviewer-facilitated time tradeoff (TTO) tasks. DCEs capture utilities on a latent scale and are often coupled with a small number of TTO tasks to anchor utilities to the interval scale. Given the costly nature of TTO data, design strategies that maximize value set precision per TTO response are critical.
Under simplifying assumptions, we expressed the mean square prediction error (MSE) of the final value set as a function of the number of TTO-valued health states and the variance of the states' latent utilities. We hypothesized that even when these assumptions do not hold, the MSE 1) decreases as increases while holding fixed and 2) decreases as increases while holding fixed. We used simulation to examine whether there was empirical support for our hypotheses a) assuming an underlying linear relationship between TTO and DCE utilities and b) using published results from the Dutch, US, and Indonesian EQ-5D-5L valuation studies.
Simulation set (a) supported the hypotheses, as did simulations parameterized using valuation data from Indonesia, which showed a linear relationship between TTO and DCE utilities. The US and Dutch valuation data showed nonlinear relationships between TTO and DCE utilities and did not support the hypotheses. Specifically, for fixed , smaller values of reduced rather than increased the MSE.
Given that, in practice, the underlying relationship between TTO and DCE utilities may be nonlinear, health states for TTO valuation should be placed evenly across the latent utility scale to avoid systematic bias in some regions of the scale.
Valuation studies may feature a large number of respondents completing discrete choice tasks online, with a smaller number of respondents completing time tradeoff (TTO) tasks to anchor the discrete choice utilities to an interval scale.We show that having each TTO respondent complete multiple tasks rather than a single task improves value set precision.Keeping the total number of TTO respondents and the number of tasks per respondent fixed, having 20 health states directly valued through TTO leads to better predictive precision than valuing 10 health states directly.If DCE latent utilities and TTO utilities follow a perfect linear relationship, choosing the TTO states to be valued by weighting on the 2 ends of the latent utility scale leads to better predictive precision than choosing states evenly across the latent utility scale.Conversely, if DCE latent utilities and TTO utilities do not follow a linear relationship, choosing the states to be valued using TTO evenly across the latent utility scale leads to better predictive precision than weighted selection does.In the context of valuation of the EQ-5D-Y-3L, we recommend valuing 20 or more health states using TTO and placing them evenly across the latent utility scale.
在获取用于评估多属性效用工具的效用值时,在线进行的离散选择实验(DCE)比由访谈者协助的时间权衡(TTO)任务成本更低。DCE在潜在尺度上获取效用值,并且通常与少量TTO任务相结合,以便将效用值锚定到区间尺度上。鉴于TTO数据成本高昂,最大化每个TTO响应的价值集精度的设计策略至关重要。
在简化假设下,我们将最终价值集的均方预测误差(MSE)表示为TTO赋值的健康状态数量以及这些状态潜在效用方差的函数。我们假设,即使这些假设不成立,MSE在固定时会随着增加而减小,并且在固定时会随着增加而减小。我们使用模拟来检验是否有经验证据支持我们的假设:a)假设TTO和DCE效用之间存在潜在的线性关系;b)使用来自荷兰、美国和印度尼西亚EQ - 5D - 5L估值研究的已发表结果。
模拟集(a)支持这些假设,使用来自印度尼西亚估值数据进行参数化的模拟也支持这些假设,这些模拟显示TTO和DCE效用之间存在线性关系。美国和荷兰的估值数据显示TTO和DCE效用之间存在非线性关系,不支持这些假设。具体而言,对于固定的,较小的值会降低而不是增加MSE。
鉴于在实际中,TTO和DCE效用之间的潜在关系可能是非线性的,用于TTO估值的健康状态应在潜在效用尺度上均匀分布,以避免在尺度的某些区域出现系统偏差。
估值研究可能具有大量受访者在线完成离散选择任务,同时有较少受访者完成时间权衡(TTO)任务,以便将离散选择效用值锚定到区间尺度上。我们表明,让每个TTO受访者完成多个任务而不是单个任务可提高价值集精度。在TTO受访者总数和每个受访者的任务数量固定的情况下,通过TTO直接评估20个健康状态比评估10个健康状态具有更好的预测精度。如果DCE潜在效用和TTO效用遵循完美的线性关系,通过在潜在效用尺度的两端加权来选择要评估的TTO状态比在潜在效用尺度上均匀选择状态具有更好的预测精度。相反,如果DCE潜在效用和TTO效用不遵循线性关系,在潜在效用尺度上均匀选择使用TTO评估的状态比加权选择具有更好的预测精度。在EQ - 5D - Y - 3L估值的背景下,我们建议使用TTO评估20个或更多健康状态,并将它们均匀分布在潜在效用尺度上。