Suppr超能文献

利用超图 p-Laplacian 正则化多任务特征学习诊断阿尔茨海默病。

Diagnosis of Alzheimer's disease using hypergraph p-Laplacian regularized multi-task feature learning.

机构信息

School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China.

Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, Guangxi, China; School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, Guangxi, China.

出版信息

J Biomed Inform. 2023 Apr;140:104326. doi: 10.1016/j.jbi.2023.104326. Epub 2023 Mar 3.

Abstract

Multimodal data-based classification methods have been widely used in the diagnosis of Alzheimer's disease (AD) and have achieved better performance than single-modal-based methods. However, most classification methods based on multimodal data tend to consider only the correlation between different modal data and ignore the inherent non-linear higher-order relationships between similar data, which can improve the robustness of the model. Therefore, this study proposes a hypergraph p-Laplacian regularized multi-task feature selection (HpMTFS) method for AD classification. Specifically, feature selection for each modal data is considered as a distinct task and the common features of multimodal data are extracted jointly by group-sparsity regularizer. In particular, two regularization terms are introduced in this study, namely (1) a hypergraph p-Laplacian regularization term to retain higher-order structural information for similar data, and (2) a Frobenius norm regularization term to improve the noise immunity of the model. Finally, using a multi-kernel support vector machine to fuse multimodal features and perform the final classification. We used baseline sMRI, FDG-PET, and AV-45 PET imaging data from 528 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate our approach. Experimental results show that our HpMTFS method outperforms existing multimodal-based classification methods.

摘要

基于多模态数据的分类方法已被广泛应用于阿尔茨海默病(AD)的诊断中,并取得了比基于单模态方法更好的性能。然而,大多数基于多模态数据的分类方法往往只考虑不同模态数据之间的相关性,而忽略了相似数据之间固有的非线性高阶关系,这可以提高模型的鲁棒性。因此,本研究提出了一种基于超图 p-Laplacian 正则化多任务特征选择(HpMTFS)的 AD 分类方法。具体来说,将每个模态数据的特征选择视为一个独立的任务,并通过组稀疏正则化器共同提取多模态数据的公共特征。特别地,本研究引入了两个正则化项,即(1)超图 p-Laplacian 正则化项,用于保留相似数据的高阶结构信息,以及(2)Frobenius 范数正则化项,用于提高模型的抗噪能力。最后,使用多核支持向量机融合多模态特征并进行最终分类。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)的 528 名受试者的基线 sMRI、FDG-PET 和 AV-45 PET 成像数据来评估我们的方法。实验结果表明,我们的 HpMTFS 方法优于现有的基于多模态的分类方法。

相似文献

1
Diagnosis of Alzheimer's disease using hypergraph p-Laplacian regularized multi-task feature learning.
J Biomed Inform. 2023 Apr;140:104326. doi: 10.1016/j.jbi.2023.104326. Epub 2023 Mar 3.
2
Hypergraph based multi-task feature selection for multimodal classification of Alzheimer's disease.
Comput Med Imaging Graph. 2020 Mar;80:101663. doi: 10.1016/j.compmedimag.2019.101663. Epub 2019 Dec 19.
4
Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):275-83. doi: 10.1007/978-3-642-40811-3_35.
5
Manifold regularized multitask feature learning for multimodality disease classification.
Hum Brain Mapp. 2015 Feb;36(2):489-507. doi: 10.1002/hbm.22642. Epub 2014 Oct 3.
6
Hypergraph-regularized multimodal learning by graph diffusion for imaging genetics based Alzheimer's Disease diagnosis.
Med Image Anal. 2023 Oct;89:102883. doi: 10.1016/j.media.2023.102883. Epub 2023 Jun 30.
7
Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease.
Med Image Anal. 2020 Feb;60:101625. doi: 10.1016/j.media.2019.101625. Epub 2019 Dec 2.
8
Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease.
Brain Imaging Behav. 2016 Sep;10(3):739-49. doi: 10.1007/s11682-015-9437-x.
9
Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.
Neuroimage. 2012 Jan 16;59(2):895-907. doi: 10.1016/j.neuroimage.2011.09.069. Epub 2011 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验