School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China.
Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, Guangxi, China; School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, Guangxi, China.
J Biomed Inform. 2023 Apr;140:104326. doi: 10.1016/j.jbi.2023.104326. Epub 2023 Mar 3.
Multimodal data-based classification methods have been widely used in the diagnosis of Alzheimer's disease (AD) and have achieved better performance than single-modal-based methods. However, most classification methods based on multimodal data tend to consider only the correlation between different modal data and ignore the inherent non-linear higher-order relationships between similar data, which can improve the robustness of the model. Therefore, this study proposes a hypergraph p-Laplacian regularized multi-task feature selection (HpMTFS) method for AD classification. Specifically, feature selection for each modal data is considered as a distinct task and the common features of multimodal data are extracted jointly by group-sparsity regularizer. In particular, two regularization terms are introduced in this study, namely (1) a hypergraph p-Laplacian regularization term to retain higher-order structural information for similar data, and (2) a Frobenius norm regularization term to improve the noise immunity of the model. Finally, using a multi-kernel support vector machine to fuse multimodal features and perform the final classification. We used baseline sMRI, FDG-PET, and AV-45 PET imaging data from 528 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate our approach. Experimental results show that our HpMTFS method outperforms existing multimodal-based classification methods.
基于多模态数据的分类方法已被广泛应用于阿尔茨海默病(AD)的诊断中,并取得了比基于单模态方法更好的性能。然而,大多数基于多模态数据的分类方法往往只考虑不同模态数据之间的相关性,而忽略了相似数据之间固有的非线性高阶关系,这可以提高模型的鲁棒性。因此,本研究提出了一种基于超图 p-Laplacian 正则化多任务特征选择(HpMTFS)的 AD 分类方法。具体来说,将每个模态数据的特征选择视为一个独立的任务,并通过组稀疏正则化器共同提取多模态数据的公共特征。特别地,本研究引入了两个正则化项,即(1)超图 p-Laplacian 正则化项,用于保留相似数据的高阶结构信息,以及(2)Frobenius 范数正则化项,用于提高模型的抗噪能力。最后,使用多核支持向量机融合多模态特征并进行最终分类。我们使用来自阿尔茨海默病神经影像学倡议(ADNI)的 528 名受试者的基线 sMRI、FDG-PET 和 AV-45 PET 成像数据来评估我们的方法。实验结果表明,我们的 HpMTFS 方法优于现有的基于多模态的分类方法。