Suppr超能文献

基于神经网络的语义空间认知图的形成和抽象概念的假设出现。

Neural network based formation of cognitive maps of semantic spaces and the putative emergence of abstract concepts.

机构信息

Cognitive Computational Neuroscience Group, University Erlangen-Nuremberg, Erlangen, Germany.

Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Sci Rep. 2023 Mar 4;13(1):3644. doi: 10.1038/s41598-023-30307-6.

Abstract

How do we make sense of the input from our sensory organs, and put the perceived information into context of our past experiences? The hippocampal-entorhinal complex plays a major role in the organization of memory and thought. The formation of and navigation in cognitive maps of arbitrary mental spaces via place and grid cells can serve as a representation of memories and experiences and their relations to each other. The multi-scale successor representation is proposed to be the mathematical principle underlying place and grid cell computations. Here, we present a neural network, which learns a cognitive map of a semantic space based on 32 different animal species encoded as feature vectors. The neural network successfully learns the similarities between different animal species, and constructs a cognitive map of 'animal space' based on the principle of successor representations with an accuracy of around 30% which is near to the theoretical maximum regarding the fact that all animal species have more than one possible successor, i.e. nearest neighbor in feature space. Furthermore, a hierarchical structure, i.e. different scales of cognitive maps, can be modeled based on multi-scale successor representations. We find that, in fine-grained cognitive maps, the animal vectors are evenly distributed in feature space. In contrast, in coarse-grained maps, animal vectors are highly clustered according to their biological class, i.e. amphibians, mammals and insects. This could be a putative mechanism enabling the emergence of new, abstract semantic concepts. Finally, even completely new or incomplete input can be represented by interpolation of the representations from the cognitive map with remarkable high accuracy of up to 95%. We conclude that the successor representation can serve as a weighted pointer to past memories and experiences, and may therefore be a crucial building block to include prior knowledge, and to derive context knowledge from novel input. Thus, our model provides a new tool to complement contemporary deep learning approaches on the road towards artificial general intelligence.

摘要

我们如何理解来自感觉器官的输入,并将感知信息置于我们过去经验的背景下?海马体-内嗅皮质复合体在记忆和思维的组织中起着重要作用。通过位置和网格细胞在任意心理空间的认知地图的形成和导航,可以作为记忆和经验及其相互关系的表示。多尺度后继表示被提出是位置和网格细胞计算的数学原理。在这里,我们提出了一个神经网络,它基于作为特征向量编码的 32 种不同动物物种来学习语义空间的认知图。神经网络成功地学习了不同动物物种之间的相似性,并基于后继表示的原则构建了一个“动物空间”的认知图,其准确性约为 30%,接近关于所有动物物种都有一个以上可能的后继者(即特征空间中的最近邻)的理论最大值。此外,可以基于多尺度后继表示来建模分层结构,即不同尺度的认知图。我们发现,在细粒度的认知图中,动物向量在特征空间中均匀分布。相比之下,在粗粒度地图中,动物向量根据其生物类群高度聚类,即两栖动物、哺乳动物和昆虫。这可能是一种潜在的机制,使新的、抽象的语义概念能够出现。最后,即使是全新的或不完整的输入,也可以通过对认知图的表示进行插值来表示,并且精度非常高,高达 95%。我们的结论是,后继表示可以作为过去记忆和经验的加权指针,因此可能是包括先验知识和从新输入中推导出上下文知识的关键构建块。因此,我们的模型提供了一种新的工具,可以补充当代深度学习方法,朝着人工通用智能的方向发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd52/9985610/1b80866bcdcd/41598_2023_30307_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验