Suppr超能文献

基于深度学习的青光眼视野进展预测临床决策支持工具的可用性和临床医生接受度。

Usability and Clinician Acceptance of a Deep Learning-Based Clinical Decision Support Tool for Predicting Glaucomatous Visual Field Progression.

机构信息

Division of Ophthalmology Informatics and Data Science, Viterbi Family Department of Ophthalmology and Shiley Eye Institute.

UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, CA.

出版信息

J Glaucoma. 2023 Mar 1;32(3):151-158. doi: 10.1097/IJG.0000000000002163. Epub 2022 Dec 21.

Abstract

PRCIS

We updated a clinical decision support tool integrating predicted visual field (VF) metrics from an artificial intelligence model and assessed clinician perceptions of the predicted VF metric in this usability study.

PURPOSE

To evaluate clinician perceptions of a prototyped clinical decision support (CDS) tool that integrates visual field (VF) metric predictions from artificial intelligence (AI) models.

METHODS

Ten ophthalmologists and optometrists from the University of California San Diego participated in 6 cases from 6 patients, consisting of 11 eyes, uploaded to a CDS tool ("GLANCE", designed to help clinicians "at a glance"). For each case, clinicians answered questions about management recommendations and attitudes towards GLANCE, particularly regarding the utility and trustworthiness of the AI-predicted VF metrics and willingness to decrease VF testing frequency.

MAIN OUTCOMES AND MEASURES

Mean counts of management recommendations and mean Likert scale scores were calculated to assess overall management trends and attitudes towards the CDS tool for each case. In addition, system usability scale scores were calculated.

RESULTS

The mean Likert scores for trust in and utility of the predicted VF metric and clinician willingness to decrease VF testing frequency were 3.27, 3.42, and 2.64, respectively (1=strongly disagree, 5=strongly agree). When stratified by glaucoma severity, all mean Likert scores decreased as severity increased. The system usability scale score across all responders was 66.1±16.0 (43rd percentile).

CONCLUSIONS

A CDS tool can be designed to present AI model outputs in a useful, trustworthy manner that clinicians are generally willing to integrate into their clinical decision-making. Future work is needed to understand how to best develop explainable and trustworthy CDS tools integrating AI before clinical deployment.

摘要

PRCIS

我们更新了一个临床决策支持工具,该工具整合了人工智能模型预测的视野(VF)指标,并在这项可用性研究中评估了临床医生对预测 VF 指标的看法。

目的

评估临床医生对原型临床决策支持(CDS)工具的看法,该工具整合了人工智能(AI)模型的视野(VF)指标预测。

方法

来自加利福尼亚大学圣地亚哥分校的 10 名眼科医生和验光师参与了 6 个病例,每个病例包含 6 名患者的 11 只眼睛,这些病例被上传到一个 CDS 工具(“GLANCE”,旨在帮助临床医生“一目了然”)。对于每个病例,临床医生回答了关于管理建议和对 GLANCE 的态度的问题,特别是关于 AI 预测的 VF 指标的有用性和可信度,以及减少 VF 测试频率的意愿。

主要结果和测量

计算管理建议的平均值和李克特量表得分,以评估每个病例的总体管理趋势和对 CDS 工具的态度。此外,还计算了系统可用性量表得分。

结果

预测 VF 指标的信任度和实用性以及临床医生减少 VF 测试频率的意愿的平均李克特得分分别为 3.27、3.42 和 2.64(1=强烈不同意,5=强烈同意)。按青光眼严重程度分层时,随着严重程度的增加,所有平均李克特得分均降低。所有应答者的系统可用性量表得分为 66.1±16.0(第 43 百分位)。

结论

可以设计一个 CDS 工具,以有用且值得信赖的方式呈现 AI 模型的输出,临床医生通常愿意将其整合到他们的临床决策中。在临床部署之前,需要进一步研究如何最好地开发可解释和值得信赖的整合 AI 的 CDS 工具。

相似文献

2
Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.
Ophthalmology. 2021 Jul;128(7):1016-1026. doi: 10.1016/j.ophtha.2020.12.020. Epub 2020 Dec 25.
4
Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard.
Ophthalmology. 2020 Sep;127(9):1170-1178. doi: 10.1016/j.ophtha.2020.03.008. Epub 2020 Mar 10.
5
Toward a responsible future: recommendations for AI-enabled clinical decision support.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2730-2739. doi: 10.1093/jamia/ocae209.
7
Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.
Ophthalmol Glaucoma. 2024 May-Jun;7(3):222-231. doi: 10.1016/j.ogla.2024.01.005. Epub 2024 Jan 29.
8
Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic.
Ophthalmol Glaucoma. 2021 Jan-Feb;4(1):5-9. doi: 10.1016/j.ogla.2020.08.006. Epub 2020 Aug 15.
9
Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice.
Transl Vis Sci Technol. 2020 Oct 15;9(2):55. doi: 10.1167/tvst.9.2.55. eCollection 2020 Oct.
10
Prediction of 10-2 Visual Field Loss Using Optical Coherence Tomography and 24-2 Visual Field Data.
J Glaucoma. 2021 Jun 1;30(6):e292-e299. doi: 10.1097/IJG.0000000000001837.

引用本文的文献

1
Usability assessments in clinical decision support systems.
North Clin Istanb. 2025 Jun 19;12(3):372-377. doi: 10.14744/nci.2024.22316. eCollection 2025.
3
Applications of machine learning in glaucoma diagnosis based on tabular data: a systematic review.
BMC Biomed Eng. 2025 Aug 1;7(1):9. doi: 10.1186/s42490-025-00095-3.
6
User-centric AI: evaluating the usability of generative AI applications through user reviews on app stores.
PeerJ Comput Sci. 2024 Oct 25;10:e2421. doi: 10.7717/peerj-cs.2421. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验