Suppr超能文献

用于正常组织并发症概率预测的机器学习:具有通用性和易于实施的预测能力。

Machine learning for normal tissue complication probability prediction: Predictive power with versatility and easy implementation.

作者信息

Samant Pratik, Ruysscher Dirk de, Hoebers Frank, Canters Richard, Hall Emma, Nutting Chris, Maughan Tim, Van den Heuvel Frank

机构信息

Oxford University Hospitals NHS Foundation Trust, Radiotherapy Physics, Oxford, United Kingdom.

University of Oxford, Department of Oncology, Oxford, United Kingdom.

出版信息

Clin Transl Radiat Oncol. 2023 Feb 10;39:100595. doi: 10.1016/j.ctro.2023.100595. eCollection 2023 Mar.

Abstract

BACKGROUND AND PURPOSE

A popular Normal tissue Complication (NTCP) model deployed to predict radiotherapy (RT) toxicity is the Lyman-Burman Kutcher (LKB) model of tissue complication. Despite the LKB model's popularity, it can suffer from numerical instability and considers only the generalized mean dose (GMD) to an organ. Machine learning (ML) algorithms can potentially offer superior predictive power of the LKB model, and with fewer drawbacks. Here we examine the numerical characteristics and predictive power of the LKB model and compare these with those of ML.

MATERIALS AND METHODS

Both an LKB model and ML models were used to predict G2 Xerostomia on patients following RT for head and neck cancer, using the dose volume histogram of parotid glands as the input feature. Model speed, convergence characteristics and predictive power was evaluated on an independent training set.

RESULTS

We found that only global optimization algorithms could guarantee a convergent and predictive LKB model. At the same time our results showed that ML models remained unconditionally convergent and predictive, while staying robust to gradient descent optimization. ML models outperform LKB in Brier score and accuracy but compare to LKB in ROC-AUC.

CONCLUSION

We have demonstrated that ML models can quantify NTCP better than or as well as LKB models, even for a toxicity that the LKB model is particularly well suited to predict. ML models can offer this performance while offering fundamental advantages in model convergence, speed, and flexibility, and so could offer an alternative to the LKB model that could potentially be used in clinical RT planning decisions.

摘要

背景与目的

一种用于预测放射治疗(RT)毒性的常用正常组织并发症(NTCP)模型是组织并发症的莱曼-伯曼-库彻(LKB)模型。尽管LKB模型很受欢迎,但它可能存在数值不稳定性,并且仅考虑器官的广义平均剂量(GMD)。机器学习(ML)算法可能具有比LKB模型更强的预测能力,且缺点更少。在此,我们研究LKB模型的数值特征和预测能力,并将其与ML的进行比较。

材料与方法

使用腮腺的剂量体积直方图作为输入特征,LKB模型和ML模型均用于预测头颈部癌患者放疗后的G2级口干症。在一个独立训练集上评估模型速度、收敛特性和预测能力。

结果

我们发现只有全局优化算法能够保证LKB模型收敛且具有预测性。同时我们的结果表明,ML模型无条件收敛且具有预测性,同时对梯度下降优化具有鲁棒性。ML模型在布里尔评分和准确性方面优于LKB模型,但在ROC-AUC方面与LKB模型相当。

结论

我们已经证明,即使对于LKB模型特别适合预测的毒性,ML模型也能比LKB模型更好地或同样好地量化NTCP。ML模型在提供这种性能的同时,在模型收敛、速度和灵活性方面具有根本优势,因此可以为LKB模型提供一种替代方案,有可能用于临床放疗计划决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f21d/9984444/5037afe14d5f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验